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Abstract

Credit markets in the U.S. are dominated by institutional investors, whose risk capacity
is limited by various risk-based regulations. I study the macroeconomic implications of such
risk-based regulations in a general-equilibrium model featuring firms with heterogeneous
credit risks and a bond investor subject to risk-based constraints. During economic down-
turns, these risk-based constraints become a heterogeneous risk accelerator: It increases the debt
financing cost for risky firms, amplifying their default risk, while generating convenience
yields for the safest firms. In aggregate, these constraints significantly amplify the drop in
investment and output. I evaluate the effects of credit market intervention programs using
this framework. I find that during credit market disruptions, credit facilities mitigate the
initial damage and speed up the follow-up recovery.

1 Introduction

Credit markets in the U.S. are dominated by financial institutions, such as banks in the loan
market and insurance companies and mutual funds in the corporate bond market. These
institutions are subject to various regulations in their portfolio allocation. Such regulations are
often risk-based—financial institutions are often required to hold more capital against assets
with higher risks. For example, theRisk-BasedCapital (RBC) regulation on insurance companies
requires a higher equity buffer for assets with higher credit risks (Becker and Ivashina, 2015),
and the Basel Accords impose similar requirement on banks (BCBS, 2011). Such risk-based
regulations naturally lead to differential effects on bonds with different credit risks, and hence
also heterogeneous effects on the real outcomes of issuing firms. Nonetheless, despite the
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prevalence of risk-based regulations in credit markets and the crucial role of credit markets in
the real economy, their macroeconomic implication has been rarely explored.

The goal of this paper is to provide a quantitative framework to study how risk-based regula-
tions on financial intermediaries affect the real economy, and suitable policy interventions to
counteract if needed. To this end, I build a general-equilibriummodel with a sector of of hetero-
geneous firms and a representative institutional investor. Firms choose optimal investment and
long-term bond issuance dynamically. They are subject to idiosyncratic capital quality shocks,
which induce diffusion in leverage and hence heterogeneous credit risks. Institutional investors
hold corporate bonds but are constrained by risk-based regulations as in the real world. Using
this model, I study the effect of risk-based regulations on investment and output after a crisis
shock that mimics the Covid-19 recession in 2020. I also evaluate the policy consequences of
the credit market interventions by the Federal Reserve.

I propose a novel mechanism caused by risk-based regulations, called heterogeneous risk accel-
erator. It has the classic financial accelerator feature (Kiyotaki and Moore, 1997; Bernanke et
al., 1999; Brunnermeier and Sannikov, 2014): during economic downturns, firms’ credit risks
endogenously increase, leading to higher portfolio risks for bond investors and thereby binding
risk constraints. To comply with regulations, bond investors are willing to take risky bonds only
at discounts. Therefore, risky firms now face higher financing costs in order to roll over their
debt. They borrow more and also cut off investment to keep themselves afloat, amplifying the
default risk. The higher default risk further feeds back into risk constraints, triggering another
round of amplification.

The novelty of this mechanism lies in its redistributional effects: Along the spectrum of credit
risk, risk-based regulations financially suppress risky firms while subsidizing the safest firms.
Firms with higher credit risks are more severely hurt by the accelerator, as their bonds are
assigned higher risk weights in the portfolio and receive higher discounts. In contrast, safe
firms actually benefit from such regulations. Their bonds now carry a “convenience premium”,
granting them preferential access to the credit market. The convenience premium comes from
the general-equilibrium effect: with the same aggregate demand for savings, when savings in
risky bonds are constrained, the extra demand is poured into the less-constrained safe bonds,
pushing up its price. Whether this redistribution reduces or exacerbates the drop in aggregate
investment depends on how firms are distributed on the spectrum of credit risks. In real
world, most firms are rated as BBB, which carries significant risk weights and is penalized by
regulations. This salient feature of data is reflected in calibration. Therefore, in aggregate,
risk-based regulations aggravate the drop in investment and outputs.

In this model, credit market intervention programs are effective at stimulating the economy
during a crisis. The stimulus program is modeled as government purchasing corporate bonds
financed by issuing government liabilities, as do those corporate credit facilities (CCFs) estab-
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lished by the Fed in March 2020.1 The stimulus program relieves risk constraints by taking
risky assets off financial institutions’ balance sheets. In my numerical experiments, I find such
credit facilities successfully speed up the recovery of the economy from a credit market melt-
down. It also captures the announcement effect of such policies: upon the announcement of
the program, yields in the credit market drop immediately even before the purchase begins.
This is because the announcement changes the market belief of default risks in the near future,
and hence reduces the risk weights immediately. This announcement effect is consistent with
empirical findings using high-frequency approaches around FOMC meetings (Gilchrist et al.,
2020).

Below I provide an overview of my method and quantitative results. I start in Section 2
with a brief review of risk-based regulations for banks, insurance companies, and mutual
funds. Banks face risk-weighted capital requirements in the Basel Accords, insurance companies
are subject to risk-based capital (RBC) requirements imposed by the National Association of
Insurance Commissioners (NAIC), and bond mutual funds often have restrictions on the share
of risky assets either for their internal risk management or by their investment mandates. These
regulations usually involve a risk metric, which maps assets into risk scores, and a hard cap on
the total risk scores in the portfolio. The risk metric may vary across industries and institutions.
For example, large banks often have an internal model to estimate the credit risk of an asset and
a risk-weight function to convert the credit risk to risk weights. Onewidely usedmetric in credit
markets is the credit rating by credit rating agencies such as Moody’s and S&P. Credit ratings
are discrete, creating discontinuities, particularly around the cutoff of investment-grade and
high-yield bonds. The discrete feature creates market segmentation that are well-documented
in the literature (Ellul et al., 2011; Chernenko and Sunderam, 2012; Becker and Ivashina, 2015).
These realistic features of risk regulations are incorporated in my model framework.

Section 3 describes my framework. The model has three types of market participants in the
economy: a representative household, who is the ultimate owner of all securities in the economy,
a sector of heterogeneous firms, financed by equity and long-term defaultable bonds, and
a financial intermediary that invests in bonds on behalf of the household. There is also a
government in the model, issuing government bonds and collecting taxes from firms to pay
interests. For trackability, this model does not feature anticipated aggregate risks.2 Instead, I
calibrate the model at the steady state, and hit the economy with a probability-zero crisis shock

1In real world, the Fed purchases corporate bonds by releasing reserves into the financial system. In a real
model without nominal rigidity, it is equivalent to issuing government debt.

2With aggregate risks and heterogeneous firms, the whole distribution of firms becomes state variables of the
model, dramatically increasing the computational complexity. I follow the common practice in the heterogeneous-
agent literature by assuming away aggregate risks and focusing on risks induced by idiosyncratic shocks. Without
the aggregate risk, the economy evolves deterministically and therefore aggregate states can be summarized using
the time dimension alone. Recently computational methods have also been also developed in the literature to
overcome the curse of dimensionality, such as Schaab (2020) using adaptive sparse grid and Fernandez-Villaverde
et al. (2019) using deep learning.
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(an “MIT” shock) to study the transition dynamics in crisis.

Section 3.2 describes firms’ behavior. Firms face frictions in equity issuance, and finance their
investment by borrowing on the credit market via long-term bonds. Firms are identical at
birth, but the different realizations of idiosyncratic capital quality shocks lead to heterogeneous
leverage ex-post. Leverage gives rise to credit risks: when a firm’s leverage is above a certain
threshold after a series of negative shocks, it is unable to roll over its debt and has to enter the
bankruptcy process, liquidating its capital to pay off debt holders.

Section 3.3 describes the pricing of bonds by financial intermediary. The price of a corporate
bond equals to the future cash flow discounted at suitable discount rates. As all idiosyncratic
shocks are diversified away in their portfolio, absent of frictions, the discount rates for all bonds
are equalized to the risk-free rate by no-arbitrage. However, just as in the real world, the
intermediary is subject to two risk constraints. A risk-weight (RW) constraint assigns each bond
a risk weight and limits the total risk weights in the portfolio. The risk weight is continuously
increasing in the credit risk of a bond. Another high-yield (HY) constraint limits the share of
portfolio in high-yield bonds, i.e., bonds whose default probabilities are higher than a given
threshold. These two constraints allow for both sensitive responses in riskweights to credit risks
as well as potential market segmentation between investment-grade (IG) and high-yield (HY)
bonds. When constraints bind, bonds with higher risk weights (or in the high-yield segment)
are discounted at higher rates, while in contrast the government bond and the safest corporate
bonds appreciate as a “safe haven”.

The equilibrium between the pricing of long-term bonds and firms’ optimal policies is a rather
complicated object and worth a short discussion here. The challenge is that it is a high-
dimensional equilibrium, as firms need to know bond prices at each possible state in the future
in order to make the optimal decision, while bond investors also need to know firms’ optimal
policies at each state to estimate the default risk. In the language of the model, this model gives
a coupled system of partial differential equations (PDEs) with optimal controls. This setup
closely follows the corporate finance literature on dynamic leveraging, represented by Demarzo
and He (2020). Their model features coupled ODEs, but they manage to decouple them thanks
to the analytical tractability of their model. My model features much richer frictions, so the
coupled PDEs have to be solved numerically. I provide an algorithm that can solve it efficiently
and nest it into a general equilibrium. This numerical algorithm opens doors for such models
to many broad quantitative applications.3

I calibrate the model in Section 4. Crucial to my quantitative results are the distribution of firms
along the credit risk spectrum and the risk-weight function. My model captures the empirical
stylized fact that default is generally a rare event (around 0.5% per year, dollar-weighted). By

3Similar models have been built in discrete time, such as Kuehn and Schmid (2014); Gomes et al. (2016); Gomes
and Schmid (2020).
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calibration, high-yield firms only account for 15% in the corporate bond market in the model,
and most firms carry medium levels of credit risks, equivalent to firms rated as BBB in real
world. I calibrate a continuous risk-weight function using the standardized approach from the
Basel Accords, which assigns zero weight to the U.S. government bond, and is very sensitive to
small to medium risks. Figure 1 summarizes key features of my calibration.

I then introduce an aggregate transitory shock to the economy in Section 5.1 and study the
transition dynamics with and without constraints. The shock is motivated by the COVID-19
recession in theU.S. in 2020, featuring a 10%drop in aggregateproductivity anda 20% increase in
firms’ volatility. I consider three different scenarios after the shock: an unconstrained scenario,
a constrained scenario where only the risk-weight constraint is active (RW-constrained), and
a scenario where both constraints are active (RW&HY-constrained). The recession under the
unconstrained scenario is mild: Default probabilities and yields increase slightly, reflecting
lower-than-usual short-term fundamentals, and aggregate investment drops by around 10%
but recovers quickly.

In the RW-constrained scenario, due to higher default risks and therefore larger risk weights,
the risk-weight constraint endogenously binds, raising corporate bond yields. Higher yields
increase financing costs for firms, hampering investment and accelerating default. Investment
drop by 70% for an average high-yield firm, and 25% for an average investment-grade firm. On
the contrary, despite the negative TFP shocks, the safest firms do not reduce their investment at
all, thanks to the convenience premium carried in their bonds. In aggregate, investment drops
by 15% more relative to the unconstrained scenario.

The role for the additional HY constraint is mostly redistributional: It further suppresses prices
of HY bonds, while relieving financing costs for IG firms. Its aggregate effect is small, and
if anything, the aggregate investment is even slightly higher under the RW&HY-constrained
scenario. This is because high-yield firms are subject to strong debt-overhang: As they are closer
to default, the benefit of additional investment will be mostly absorbed by debt holders. This
reduces equity holders’ incentive to invest. By redistributing credits away from such firms to
healthy firms, the HY constraint actually improves aggregate investment. The effect is small in
aggregate because by calibration, high-yield firms account for a small share of the market.

In Section 5.2, I study the effect of credit market intervention programs in response to the crisis
shock. As in the real world, the government issues government debt (bank reserves) to purchase
investment-grade corporate bonds. Corporate bond yields and default probabilities drop upon
the announcement even before the purchase begins, as bond investors rationally expect that
the coming stimulus can relax their binding risk constraints in the near future. Lower yields
immediately boost investment. As the government gradually increases the purchase, bond
yields further decrease back to pre-crisis levels. Overall, the stimulus policy greatly speeds up
the recovery relative to laissez-faire. I also compare this policy with an alternative policy which
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only purchases high-yield bonds, in the hope that it can relax the constraint more efficiently.
Mirroring the results on the HY constraint, my quantitative result shows that the gain from an
HY-targeting policy is negligible in aggregates.

Here I conclude the introductionwith a short discussion on the policy implications. Admittedly,
this model is not suitable for evaluating the trade-offs of risk-based regulations. It is because the
regulations are not justified within the model: in real world, risk-based regulations are imposed
to limit the risks of financial institutions, while in this model, financial institutions do not bear
risks due to diversification. Instead, I take the existence of such regulations as a primitive, and
study its quantitative effect on shock responses. In this sense, the results should be interpreted
positively rather than normatively. For this purpose, introducing aggregate risks to this model
is unlikely to overturn the major results. If anything, the mechanism studied here will be
amplified, as the fear of a potentially binding constraint in the future will disproportionately
hurt risky firms. I argue such evaluation is still helpful for understanding the functions of these
regulations, and therefore can better inform future policies.

Literature Review and Contribution. This paper contributes to multiple strands of the
literature. First, it builds on the classic financial accelerator literature that studies the role of
financial frictions in asset prices and themacroeconomy. This literature is pioneeredbyBernanke
andGertler (1989), Kiyotaki andMoore (1997), and synthesized in Bernanke et al. (1999). In their
model, entrepreneurs face a collateral borrowing constraint. A small negative shock can trigger
adverse feedback loops due to a binding constraint, resulting in amplification and propagation.
The Great Recession in 2008 revived this literature, shifting researchers’ attention to financial
frictions. Brunnermeier and Sannikov (2014) cast the model in continuous time and solve the
model with full uncertainty, as opposed to the log-linearization technique used by the earlier
literature. In light of the financial crisis, Gertler and Kiyotaki (2010); Gertler and Karadi (2011)
build a workhorse model to emphasize the role of financial intermediaries (banks) and to study
the effect of credit policies. Recently several studies also directly model capital requirement
for banks, and study its normative and positive implications for macroeconomy (Begenau,
2020; Pancost and Robatto, 2023). The contribution of this paper to the literature is twofold.
First, I study risk-based regulations in the credit market. Despite its prevalence, their role in
the macroeconomy is rarely studied. Most models in this literature treat such regulations as a
uniform leverage constraint, neglecting their risk-based feature. 4 Second andmore importantly,
I show that effects of the financial accelerator are highly heterogeneous, with risky firms being
punished and safe firms being subsidized.

My work also speaks to the empirical literature on risk-based regulations in the credit market.

4A notable exception is Repullo and Suarez (2013), who study the procyclicality of bank capital regulations due
to default risks in a dynamic equilibrium model.
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On the bank loan side, Behn et al. (2021) show that banks whose regulation is more sensitive to
credit risks (banks who adopt the internal-ratings-based approach, see discussion in Section 2)
cut off loansmore severely in response to negative shocks than other banks do. On the corporate
bond side, Ellul et al. (2011) empirically show the impact of rating-based regulations on bond
prices. They find that bonds subject to a higher probability of regulatory-induced selling exhibit
larger price declines and subsequent reversals. Chernenko and Sunderam (2012) show that the
market segmentation in the corporate bondmarket has real effects. They observe that flows into
high-yield mutual funds have an economically significant effect on the investment of high-yield
firms relative to investment-grade firms near the cutoff. This paper, inspired by these empirical
findings, build a structural model featuring such regulations to understand its quantitative role
in a general equilibrium, which is often difficult to study in reduced-form analyses.

This paper also contributes to the burgeoning literature on the effects of the unprecedented cor-
porate bond purchases by the Federal Reserve in response to the COVID-19 shock. Empirically,
Haddad et al. (2021); Nozawa and Qiu (2021); Gilchrist et al. (2020), among others, show that
the Fed’s announcement of corporate bond purchases successfully stabilized the credit market.
These studies usually employ a high-frequency approach to detect the responses in the finan-
cial market. However, empirically detecting the real effects of such policies is challenging, in
particular amid market turmoil. This paper takes a quantitative structural approach to tackle
this question, along with others such as Brunnermeier and Krishnamurthy (2020); Crouzet and
Tourre (2021); Chang (2022). Crouzet and Tourre (2021) is the closest to this paper in terms
of modeling techniques. They argue that the stimulus policy can be effective during financial
market disruptions. The current paper echoes this view with a particular source of financial
disruption in mind: binding risk constraints.

2 Institutional Background

In this section I briefly discuss the institutional background on risk-based regulations that
motivates my modeling choices. Corporate debt is commonly issued in the form of corporate
bonds or loans. Investors in these markets are often large financial institutions—the corporate
bond market is dominated by insurance companies and mutual funds, while the loan market is
dominated by banks. Though those financial institutions differ greatly in many aspects, they all
face some forms of risk-based regulations that limit credit risks they can take in their investment.

The regulation on banks is in the form of capital requirement: banks need to maintain a
minimum level of capital (equity) subject to certain rules. In the case when their loans do not
pay off, losses can hopefully be absorbed by the equity buffer, so banks still have sufficient assets
to pay off depositors. In the early years, the capital requirement simply sets a minimum level
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of capital to deposit ratio, but does not differentiate between assets with different levels of risk.
Therefore, a bank that lends mostly to AAA companies is considered as “equally strong” in this
approach as a bankwhose clientele aremostly junk bond issuers, as long as their capital-deposit
ratios are the same. This rule fails to curb the risk-shifting tendency of the under-capitalized
banks: as predicted by the classic corporate finance theories (Jensen andMeckling, 1976), banks
who are short on capital will be inclined to take more on risks, effectively shifting risks to its
depositors.5

To overcome this drawback, the first Basel Accord (Basel I) introduced risk-weighted assets in 1988.
In essence, the new regulation requires a bank to hold more capital for riskier assets. Basel I
groups banks’ assets into five risk categories based on asset classes, and assign risk weights
accordingly. The U.S. government debt has zero risk weight, while private sector debt is all
assigned with the highest risk weight, regardless of its credit risks.

The insensitivity of risk weights to credit risks in Basel I had been widely criticized. In 2004, the
Basel Committee introduces more granularity into the second Basel Accord (Basel II). In Basel
II, two approaches for risk-weighting are allowed: the standardized approach, and the internal
ratings-based (IRB) approach. Under the standardized approach, the risk weights on corporate
claims are assigned based on external credit ratings. Under the IRB approach, banks are allowed
to use their internal models to estimate risk parameters (e.g., the probability of default), and
translate them into risk weights using risk-weight functions. One advantage of the IRB approach
is that internally estimated risk weights are more sensitive to credit risks than discrete credit
ratings.6 The risk-weight methodology remains mostly unchanged in Basel III.

The Risk-Based Capital (RBC) requirement for insurance companies has been going through
similar developments as those for banks. The RBC requirement is prescribed by the National
Association of Insurance Commissioners (NAIC), and has been implemented at the state level
since the 1990s. The purpose of theRBC requirement is to identifyweakly capitalized companies
to ensure that policyholders will receive the benefits promised by the insurance companies.
Similar to the standardized approach in Basel Accords , the RBC requirement for insurance
companies also assigns a zero risk weight to the U.S. government bonds, and assign risk weights
to corporate bonds according to their credit ratings. Before 2019, there were only six risk
designations in total, so bonds with meaningfully different risks (e.g., AAA vs A) may be
assignedwith the same riskweights. This relatively crude risk-weight function leads to insurers’
bond portfolio concentrated in the risky end of each designation (the so-called “reaching-for-
yield” phenomenon, documented by Becker and Ivashina, 2015). It also createsmechanical cliffs
between bonds with similar risks but different risk designations. In 2019, the NAIC revised
the risk-weighting methodology to add more granularity to the risk-weight function. After

5See Haubrich (2020) for a brief overview on the history of bank capital requirements in the U.S.
6Researchers have also criticized the IRB approach as banks canmanipulate their internal risk-weightingmodels

to reduce effective capital requirements. See Vallascas and Hagendorff (2013); Mariathasan and Merrouche (2014).
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this update, there are 20 designation categories based on credit ratings, allowing for more
continuous changes in risk weights to underlying risks. The current risk-weighting method is
very similar to the standardized approach of Basel II. 7 Nevertheless, cliffs between designations
still exist, especially between the investment-grade and high-yield cutoff: downgrading from
BBB (investment-grade) to BB (high-yield) almost doubles the capital requirement for that
security. In addition to the RBC requirement, the NAIC also prescribes another hard cap of
20% for all non-investment-grade bonds in the portfolio of insurance companies. This cap is
generally not binding (Ellul et al., 2011).

For bond mutual funds, there is no regulatory restriction imposed by the government that
directly limits their risk-taking. Nevertheless, they are still subject to various risk-based con-
straints in their portfolio. As an industry standard, mutual funds activelymanage their portfolio
risks by setting a risk limit, using risk metrics such as Value-at-Risk (VaR). This practice is often
referred to as “risk budgeting” (Pearson, 2011). Asset allocations under the risk constraint often
deviate from the optimal policy of a utility-maximizing investor (Basak and Shapiro, 2001).
Furthermore, bond mutual funds often specialize in either investment-grade (IG) or high-yield
(HY) bonds. Mutual funds specializing in the investment grade usually have rating-based in-
vestment mandates that require portfolio managers to hold minimum shares of portfolios in the
investment grade. For example, PIMCO total return fund states in the mandate that “the Fund
invests primarily in investment-grade debt securities, but may invest up to 20% of its total assets
in high yield securities”. Some funds may also seek to track corporate bond indices, many of
which exclusively consist of investment-grade bonds. These funds will also avoid investing in
high-yield bonds to minimize tracking errors.

Several common features of risk regulations can be found from the discussion above. Risk
regulations are often imposed to mitigate the excessive risk-taking that could arise from a
typical principal-agent problem. Risk regulations are often in the form of risk limits in the
portfolio measured by certain risk metrics. These risk metrics, in theory, should sensitively
reflect credit risks of assets, while in practice it sometimes relies on discrete credit ratings,
creating discontinuity andmarket segmentation. These features of risk regulations are reflected
in my model, discussed in 3.3.

3 Model

Time is continuous. There are three types of market participants in the economy: a repre-
sentative household, who is the ultimate owner of all securities in the economy, a sector of
heterogeneous firms, financed by equity and long-term defaultable bonds, and a representative

7See Figure 6 in Obersteadt (2017).
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financial intermediary that invests in bonds on behalf of the household. The financial interme-
diary is subject to regulatory constraints detailed in Section 3.3. In addition to these market
participants, a government taxes firms’ after-interest earnings and redistributes to the house-
hold. There is no anticipated aggregate risk, so the aggregate economy evolves deterministically.
Later, I will hit the economy with a probability-zero aggregate shock (i.e., an MIT shock), and
study the transition dynamics.

3.1 Household

We start with the representative household, the ultimate owner of all securities in financial
markets. The representative household maximizes her discounted utility by choosing con-
sumption plan �C , labor supply !C , and portfolio allocation between firm equity (,�

C ) and the
bond intermediary (,�

C ). As idiosyncratic risks are fully diversified away at the portfolio level,
returns from both sources are risk-free. Furthermore, as the household can freely adjust capital
allocations, instantaneous returns from both sources have to be equalized, denoted as A 5C . The
optimization problem of the household therefore can be written as

max
�C ,!C

∫ ∞

0
4−�C

(
�

1−�
C

1 − � − �
!1+�
C

1 + �

)
3C (3.1)

B.C.

3,C =

(
A
5

C,C + FC!C + )C − �C
)
3C,

where )C is the lump-sum transfer from the government. The solution to the household’s
maximization problem gives the classic Euler equation and the labor supply function. The
former links the risk-free rate to consumption, and the latter links consumption to labor supply:

3�C

�C
=

1
�

(
A
5

C − �
)
3C (3.2)

��
�
C !

�
C = FC (3.3)

3.2 Firms

The economy is populated by a continuum of firms indexed by their capital  8C and debt in
face value �8C . Firms are subject to idiosyncratic capital quality shocks that are i.i.d. both
across time and firms. As idiosyncratic shocks are fully diversified in aggregate by the law
of large number, firms’ distribution evolves deterministically. At each instant, firms produce,
(dis-)invest, service their debt, issue/repurchase debt, and pay out the remaining earnings as
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dividends. Investment and debt issuance are chosen optimally by firm managers to maximize
expected values of dividends, discounted at the risk-free rate AC .

Production. In every instant, eachfirmproduces. 8C 3C according to aCobb-Douglas production
function . 8C = /C

(
!8C

) (
 8C

)1−, where !8C is the quantity of labor hired from a competitive labor
market. Firms can adjust labor freely, so they simply choose labor !8C to maximize instantaneous
productions net of labor expenses, . 8C − FC!8C , taking wage FC as given. This leads to a standard
labor demand function linear in capital:

!�C ( ) =
(
/C
FC

) 1
1−
 . (3.4)

Define /̃C ≡ (1 − )
(
/C
FC

) 
1−
/C as the effective productivity per unit of capital. Firms’ earnings

before interest, taxes, and depreciation (EBITDA), can be written as . 8C − FC!8C ≡ /̃C 
8
C . Two

features arise from this formulation: Firms’ earnings are linear in capital; all firms face the same
effective productivity /̃C since they are competing in the same labor market and share the same
aggregate productivity. Therefore, in describing firms’ behavior below, I proceed as if /̃C is
exogenous and firms have a linear technology.

Investment. Firms face idiosyncratic capital quality shocks that areproportional to their capital
stock. Their capital evolves according to the law of motion:

3 8C =
(
� 8C − � 8C

)
3C + � 8C3ℬ 8C , (3.5)

where � 8C is the investment optimally chosen by firm 8, � is the depreciation rate, which is tax-
deductible, and 3ℬ 8C is the increment of a standard Brownian motion, independent from each
other. When the firm actively adjusts their capital stock via investment, they also need to pay
a capital adjustment cost ! ( �

8
C

 8C
) 8C3C, where ! (�) ≡ !:

2 (� − �)
2 is convex and increasing the

investment rate �.

Financing. To finance investment, firms can issue corporate debt. Following the standard
assumption in the long-term debt literature,8 I assume that debt takes the form of exponentially-
maturing coupon bonds. Denote �8C as the face value of outstanding bonds issued by firm 8.
One unit of bond pays a constant coupon rate 2 > 0, so that over [C , C + 3C], debt holders receive
coupon payment of 2�8C3C from firm 8 in total. The coupon payment is also tax-deductible,
which shields �2�8C3C in corporate taxes. This tax shield benefit of debt provides the reason for

8e.g. Demarzo and He (2020); Kuehn and Schmid (2014); Philippon (2009).
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unleveraged firms to take leverage. The principal of debt matures exponentially at a constant
amortization rate � > 0, corresponding to an average bond maturity of 1

� . Therefore, at each
instant, firm 8 needs to repay ��8Cdt units of maturing bonds at face value. Thus, combining the
interest and principal, firm 8 needs to repay (� + 2)�8Cdt in total to avoid default.

Firms can actively manage their leverage by issuing new debt or repurchasing outstanding
debt. To adjust their debt level by � 8

C3C, they receive proceeds % 8C�
8
C3C, where % 8C is the bond

price specific to firm 8 at time C, taken as given by firms. For tractability, I assume the newly
issued bonds are identical to the existing bonds both in terms of seniority and maturity. I also
focus on the recursive equilibrium, so the price % 8C is only a function of the firm 8’s state variable
(and time), i.e., % 8C ≡ %C( 8C , �8C). To adjust their outstanding debt, firms also need to pay a

quadratic debt adjustment cost !�(�
8
C

 8C
) 8C3C ≡

!1
2

(
� 8
C

 8C
− �

)2
 8C3C.9 This adjustment cost captures

the debt issuance cost such as underwriting expenses. The law of motion for the outstanding
debt is then given as:

3�8C =
(
� 8
C − ��8C

)
3C (3.6)

To summarize, during [C , C+ 3C], firm 8 produces. 8C 3C, repays (2+ �)�8C3C to bondholders, invests
�8C 

8
C3C, issuesbonds�

8
C3C to receive%

8
C�

8
C3C in cash, andpays corporate taxes �

(
/C 

8
C − 2�8C − � 8C

)
3C,

capital adjustment costs Φ ,8C 3C and debt adjustment costs Φ�,8C 3C. The remaining is paid out as
dividends to equity holders. Hence the dividend flow Π8

C is given as:

Π8
C = (1 − �) /̃C 8C + �(� 8C + 2�8C)︸         ︷︷         ︸

tax shield

− (� 8C +Φ
 ,8
C )︸      ︷︷      ︸

inv.&adj

− (� + 2)�8C︸    ︷︷    ︸
debt repay

+ % 8C� 8
C −Φ

�,8
C︸        ︷︷        ︸

new issu.&adj

. (3.7)

Default, exit, and entry. The focus of this paper is on the effects of frictions on the credit
market. Nevertheless, with a frictionless equity market, equity financing will undo distortions
caused by credit market disruption by dipping into the equity holders’ pocket. Therefore, I
make a stylized assumption on the equity financing, such that firms cannot issue new equity
after they are born, which gives a non-negative dividend constraint:

Π8
C ≥ 0. (3.8)

The assumption on equity financing is stylized but realistic as empirically external equity is-
suance is both costly and infrequent (Gustafson and Iliev, 2017), which is particularly the case
during financial crises (Kahle and Stulz, 2013). Empirically the literature has also shown that the
credit market is more closely connected to firms’ investment decisions than the equity market

9The technology of the debt adjustment cost rules out jumps in debt issuance, as jumps will requires an infinite
cost.
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(Fazzari et al., 1988; Philippon, 2009; Gilchrist and Zakrajšek, 2012). In principle, this model can
also allow for costly equity issuance. In that case, the decision of default is strategically chosen
by the firm by weighing the continuation value against the outside option, and the default
boundary will be characterized by a smooth-pasting condition such as those in Leland (1994).
This is computationallymore untractable in a general-equilibriummodel. The non-negative div-
idend constraint is commonly used in such general-equilibrium models with financial frictions
for efficient computation (Khan and Thomas, 2013; Ottonello and Winberry, 2020).

The non-negative dividend constraint provides another reason for leveraged firms to continue
borrowing for financing investment or simply rolling over outstanding debt. However, when
the debt burden is too high for a firm, the non-negative dividend constraint cannot be met with
full debt repayment. The firm then has to default and declare bankruptcy. Bankruptcy forces
the equity holders to walk away from the firm and receive zero payoffs. The creditors seize and
liquidate its capital after paying liquidation costs. As staying alive always has a positive option
value, firms will never find it optimal to default voluntarily, and will default only if they cannot
stay solvent. When earnings are not enough to cover their debt repayments, firms disinvest or
issue more debt to stay afloat, until the adjustment costs increase faster than the additional cash
they can raise from doing so. The default region is therefore the region of ( , �) where the
maximum amount of cash the firm can extract is still not enough to cover the debt repayment,
i.e.,

R35

C =

{
( , �) ∈ R2��max

� ,�
ΠC (� , � | , �) < 0

}
.

In the data, default is a relatively rare event while firms exit for various other reasons. To match
the realistic lifespan for firms and avoid counterfactual over-accumulation of capital, I also
assume that firms will be hit by an exogenous exit shock at a Poisson rate �, corresponding to an
average lifespan of 1/� conditional on non-defaulting. Firms hit by the exit shock liquidate their
capital without liquidation costs, repay the debt at face value,10 and distribute the remaining to
equity holders.

To keep the total measure of firms constant, for each exiting firm there is a new entrant endowed
with initial capital  0 and debt level �0. Entry is exogenous and the net value of entry is treated
as a lump-sum transfer to the representative households, so equity holders for existing firms
will not take the entry value of the new firms into account when defaulting.

Optimal Policies. After laying out possible actions for the firms, I now turn to the optimization
problem faced by firm managers. Firm managers maximize the discounted value of dividends,

10When the total face value of the debt � 8
C is higher than capital stock  8C , the firm effectively cannot repay the

full amount. Under realistic calibration, only a very small proportion of firms are in this region, therefore I omit
the discussion for such cases here.
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plus the terminal value in the case of an exogenous exit:

+ 8
0 = max

�C ,�C
E0

[∫ )35

0
4−

∫ C

0 (AB+�)3B
(
Π8
C + �max

{
 8C − �8C , 0

})
dt

]
Π8
C ≥ 0 (3.9)

where the dividend is given in (3.7) and subject to the non-negativity constraint (3.8), the laws
of motion for  C and �C are given as (3.5) and (3.6), and )35 is the stopping time when the firm
enters the default region.

Define+C( , �) as the equity value of a firmwith the state variables ( , �) at time C, also recognize
that the bondprice% 8C is also a functiondefinedon the same state space, the optimizationproblem
in (3.9) can be written recursively as a Hamiltonian-Jacobian-Bellman (HJB) equation:

(AC + �)+C( , �) = max
� ,�

ΠC(� , � | , �) + % +C( , �) (� − � ) + %�+C( , �) (� − ��) + (3.10)

1
2%

2
  +C( , �)�

2 2 + �max { − �, 0} + %C+C( , �) (3.11)

0 ≤ ΠC(� , � | , �) ≡ (1 − �) /̃C + � (� + 2�) − � − ! (
�

 
) − (� + 2)� + %C ( , �)� − !�(

�

 
) 

with the boundary condition given by default:

+C( , �) = 0 ∀ ( , �) ∈ R35

C

Proposition 1 establishes scale independence of firms’ problem. It shows that firms’ optimal
policy functions can be characterized with only a single state variable, the book leverage ratio
1 ≡ �

 :

Proposition 1. If %C( , �) is homogeneous of degree zero in ( , �), then the value function +C( , �),
optimal investment � ( , �) and debt issuance �( , �) are homogeneous of degree one in ( , �). The
default region can be defined in terms of 1. Specifically, we have

+C( , �) = EC(1) 
�C( , �) = �C (1) 
�C ( , �) = 3C(1) 

'
35

C = {1 ∈ R|max
�,3

ΠC(�, 3 |1, 1) < 0}.

Furthermore, with additional regularity conditions, we can show that the default region is
characterized by a default threshold 1̄C :
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Corollary 1. If %C( , �) is homogeneous of degree zero in ( , �) and weakly decreasing and continuous
in leverage 1, then there exists a threshold 1̄C such that the default region is '35C = {1 ∈ R|1 > 1̄C}.

Proof. See Appendix A.1.

In Appendix A.1, I also verify the homogeneity condition for %C ( , �) indeed holds in equi-
librium. These results greatly simplify the analysis of firms’ problem: instead of studying
two-dimensional functions+C , �C and �C , from now on we can focus on the average equity value
per capital EC , the investment rate �C and the debt issuance rate 3C as functions of a single state
variable 1 within a bounded interval. The law of motion for 1 can be expressed in terms of
optimal policies using Ito’s lemma:

31 =
(
3C(1) − (� + �C(1) − �) 1 + 1�2

)
︸                                   ︷︷                                   ︸

�1C (1)

3C − 1�3ℬ.

For notational ease, I define �1C (1) as a shortcut for the drift of 1. �

Distribution and default probability. With the evolution of leverage 1 as well as capital  , we
are able to characterize the evolution of firms’ distributionwith aKolmogorov ForwardEquation
(KFE). Notice that the scale independence property does not hold for the distribution—capital
quality shocks introduce a negative correlation between leverage and capital. Thus we need to
keep track of both state variables. I define �C( , �) as the measure of firms for future reference.
Furthermore, we can also compute the default probability for each firm at time C over the future
ℎ years, denoted as &ℎ

C ( , �), or &ℎ
C (1) in terms of leverage 1 by Proposition 1. I leave the

characterization of �C and &ℎ
C to Appendix A.2 and A.3.

3.3 Bond Investors

There are three types of bonds on the corporate bond market: a government bond, non-
defaulting corporate bonds, and defaulted corporate bonds. I model defaulted bonds in the
model so that near-default bonds will also subject to risk-based constraints, as explained be-
low. All investment into the bond market has to be channeled through the representative bond
investor. I model the bond investor as a mutual fund, who has zero net worth and manages
investment on behalf of households, subject to regulatory constraints. 11 Bonds are exposed to
regulations differentially, which I will discuss in detail below.

11Alternatively, the financial intermediary can also be modeled as banks, who leverages up by borrowing from
the households, such as those in Gertler and Kiyotaki (2010). The current modeling choice simplifies the model by
avoiding another layer of leveraging and focuses on the key frictions of interest, risk-based regulations.
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Bond payoff structures. The government bond has a very simple payoff structure: it pays a
risk-free return at the rate of A�C . A non-defaulting corporate bond issued by a firm indexed by
( , �) at time C is priced at %C( , �). In Appendix A.1, I verify that given scale independence
in firms’ policy functions, %C( , �) is also homogeneous of degree zero in ( , �). That is,
bonds issued by firms with the same leverage but different sizes are identical to the investors.
Therefore, in the following discussion, I directly use the bond pricing function %C(1) defined
over leverage 1 for clarity.

The return to bonds issued by a non-defaulting firm with leverage 1 has three components: the
coupon flow 23C, the change in value (1 − %C(1)) upon maturity for the �3C share of outstanding
bonds, and changes in the price due to changes in leverage 1 as well as changes in aggregate
conditions across time C. That is,

3'2C (1) =
23C + � (1 − %C(1)) 3C + 3%C (1)

%C(1)
= A2C (1)3C − %1%C(1)1�3ℬC (3.12)

A2C (1) ≡
2 + � (1 − %C(1)) + %1%C(1)�1C (1) + 1

2%
2
11
%C(1)12�2 + %C%C(1)

%C(1)
(3.13)

where the second equality follows from applying Ito’s lemma to %C(1). Notice that 3ℬC is
idiosyncratic (superscript 8 omitted for the ease of notations), so at the portfolio level they are
diversified away, and it is the expected return A2C (1) that matters for bond investors. Once A2C (1) is
known, Equation (3.13) gives a partial differential equation (PDE), and together with boundary
conditions it pins down corporate bond prices %C(1).

When a firmhits the default threshold 1̄C , it defaults on its bonds and files bankruptcy. Its capital
will be liquidated to pay back debt holders. The liquidation is not instantaneous but follows a
Poissonprocess at the rate of �35 . Before liquidation, defaulted bonds are still held on the balance
sheet of financial intermediaries and hence take space for regulatory constraints. This modeling
choice is to ensure that defaulted bonds are always priced lower than near defaulted bonds.
Without this mechanism, when constraints bind, near-defaulted bonds may have lower price
than defaulted bonds, as the former are further discounted due to regulatory constraints while
the latter gives an immediate cash payout �

1̄
. This modeling device has a realistic motivation: in

practice the payout to the debt holders is often delayed due to court proceedings. It also induces
procyclical prices of defaulted bonds, consistent with empirical observations (Jankowitsch et al.,
2014). The details of the defaulted bonds are laid out in Appendix A.5.

Regulatory constraints. The bond mutual fund allocates its assets ,�
C between the gov-

ernment bond ,�
C , non-defaulting corporate bonds ,�

C and defaulted corporate bonds , 35

C .
Within corporate bonds, it further allocates its demand across bonds with different leverage
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1. Denote G2C (1) as the density of the demand distribution for non-defaulting corporate bonds,
such that

∫
G2C (1)31 = 1, and G35C (1) for defaulted corporate bonds. The return to the total assets

is:

3,�
C = 3(,�

C +,�
C +,

35

C )

= A�C ,
�
C 3C +,�

C

∫
3'2C (1)3- 2

C (1) +,
35

C

∫
3'

35

C (1)3-
35

C (1)

=

(
A�C ,

�
C +,�

C

∫
G2C (1)A2C (1)31 +,

35

C

∫
G
35

C (1)A
35

C (1)31
)
3C

= A
5

C,
�
C 3C (3.14)

where the third equality follows from that idiosyncratic shocks are fully diversified away in the
portfolio. Without further frictions, by no-arbitrage all bonds should offer the same expected
return, i.e., A�C = A1C (1) = A

35

C (1′) ∀(1, 1′). The fourth equality follows from the household’s
optimization: by no-arbitrage, the return from the bond fund should also be equalized with the
return from equity, A 5C .

However, the bond fund cannot adjust their portfolio freely, constrained by regulations. There
are two types of risk-based constraints, a risk-weight constraint for all corporate bonds and
a high-yield constraint for high-risk bonds only. Two constraints capture different aspects
of regulations in practice. The risk-weight constraint assigns risk weights to all corporate
bonds based on their default probabilities. This approach is close to the internal-ratings-based
approach as in the Basel Accords reviewed above. Specifically, the regulatory body specifies a
weighting function AF(&ℎ

C ) that maps default probabilities of corporate bonds to risk weights.
AF is monotonically increasing in default probabilities, and defaulted bonds are treated as
&ℎ
C = 1. The regulatory body further stipulates a risk capacity proportional to total assets,

limiting the risk loading #', in the portfolio, such that12

#',C ≡
, 2
C

∫
G2C (1)AF

(
&ℎ
C (1)

)
31 +, 35

C AF(1)
,�
C

≤ #̄', (3.15)

This constraint is global in the sense that once it binds, all corporate bonds are affected.

The high-yield constraint specifies a threshold in the default probability &̄�. . Bonds with
default probabilities higher (lower) than &̄�. are classified as high-yield (investment-grade)
bonds. The HY constraint requires that the total share of high-yield bonds in the portfolio

12As reviewed in Section (2) , in practice, such constraints are often implemented as capital (equity) requirements
on banks and insurance companies. As long as financial institutions cannot freely adjust their equity, the capital
requirement constraint will be effectively on portfolio risks as in the model. It is well-documented that equity
issuance is infrequent and costly, especially during economic downturns.
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cannot exceed a certain threshold, i.e.,

#�.C ≡
, 2
C

∫
G2C (1)I

{
&C+ℎ
C ≥ &̄�.

}
31 +, 35

C

,�
C

≤ #̄�. . (3.16)

The high-yield constraint produces the market segmentation between investment-grade and
high-yield bonds induced by the discontinuity of regulations in practice.

Finally, the government bond is not subject to any regulatory constraint in thismodel. Therefore,
the government bond provides a “safe haven” during a flight-to-safety episode.

Bond pricing. Given the household’s discount rate A 5C and the risk-free nature of the portfolio
return, the fund’s capital allocation problem is essentially static: it maximizes its instantaneous
return subject to the RW constraint (3.15) and the HY constraint (3.16). Denote �',C as the
Lagrangian multiplier for the former, and ��.C for the latter, the first order conditions link A2C (1)
to A�C :

A2C (1) = A�C + �',C AF
(
&ℎ
C (1)

)
+ ��.C I

{
&C+ℎ
C ≥ &̄�.

}
(3.17)

Finally, the no-arbitrage condition between the bond fund and equity links bond returns to the
risk-free return earned from equity:

A
5

C = A
�
C + !',C �',C + !�.C ��.C (3.18)

When either constraint binds (� > 0), there is a positive spread between the prevailing risk-
free return in the economy A 5C and the return to the government bond A�C . This spread can be
interpreted as a source of the “convenience yield” of the government bond for its regulatory
advantage.

With expected returnspindownby (3.17)-(3.18), I can fully characterize the bondpricing scheme.
Plug A2C (1) back into the full return to corporate bonds (3.12), we obtain a PDE of %C(1):(

A2C (1) + �
)
%C(1) = 2 + � + %1%C(1)�1C (1) +

1
2%

2
11
%C(1)12�2 + %C%C(1) (3.19)

By value-matching, the bond at the default boundary has the same price of the defaulted bond,
%C(1̄C) = %35C (1̄C)., where %35C (1̄C) is given by the ODE for the defaulted bond in Appendix A.5. .13

13Another boundary condition along the dimension 1 is naturally implied in the formulation of the PDE: at
1 = 0, the second-order term disappear, which gives a standard Robin boundary condition:

(
A2C (0) + �

)
%C(0) =

2 + � + %1%C(0)�1C (0) + %C%C(0).
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3.4 Government

The government is relatively simple during the steady state. It faces the budget constraint such
that

A�C �
�
C + )A0=B 5 4AC =

3��C
3C
+ )0GC .

In words, it pays out interests to the government bond and lump-sum transfer to households,
financed by either further borrowing or revenues from corporate taxes. For simplicity, I further
assume that the government commits to a constant debt policy at usual times, so ��C = �̄.

3.5 Equilibrium

An equilibrium in this economy is defined as paths of aggregate prices
{
FC , A

5

C , �
�.
C , �AFC , A�C

}
household decisions {�C , !C}, firms’ policy (functions)

{
�C(1), 3C(1), !�C ( ), 3̄C

}
, firms’ default

probability and bond pricing functions
{
&C+ℎ
C (1), %C(1)

}
, measures of firms �C( , �), and aggre-

gate quantities, such that, at every time C:

1. Given aggregate prices, households optimally choose their consumption �C and labor
supply !C ;

2. given bond pricing function %C(1) and aggregate prices, firms choose policy functions
optimally;

3. given firms’ policy functions and aggregate prices, the bond fund prices corporate bonds
according to (A.4)-(3.19), subject to risk constraints;

4. the evolution of firms’ distribution and default probabilities are consistent with firms
policy functions;

5. the government budget constraint holds;

6. all markets clear.

There are six markets in our economy: the labor market, the government bond market, the
corporate bond market, the defaulted bond market, the equity market, and the goods market.
With slight abuse of notations, I use �(1,  ) as the measure of firms over the space (1,  ) when
it is more convenient, �G(G) as the marginal distribution over the space G, where G ∈ {1,  }. I
also use 6 as the corresponding density function of its uppercase counterpart.
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The labormarket clearswhen the labor supply from the household equals the total labor demand
from firms,

!C =

∫
!�C ( )d� ( ). (3.20)

The government bond clearing condition is simply the demand by the bond fund equals the
supply by the government,

,�
C = ��C .

The corporate bond market clears when

,�
C GC(1) =

∫
1 ·  · %C(1) · 6C(3,  )3 ,

so that for each bond indexed by 1, the total amount held by the bond mutual fund equals the
market value of bond issued by firms with leverage 1. I leave the market clearing condition for
defaulted bonds to Appendix A.5 as it requires characterization of the default flow first in A.2.

The equity market clears, such that the total wealth in equity equals the total equity value of
firms

,�
C =

∫
+C( , �) 3�C( , �).

Finally, the goods market clears residually due to Walras’s law.

4 Parameterization

Without aggregate shocks, the model yields a steady state. I interpret the steady state as the
usual time and calibrate it to match several important moments in the U.S. economy between
2010-2019. Parameters are calibrated with different approaches: Some parameters, for example
the depreciation rate, have clear observable empirical counterparts, so they are set directly
using empirical moments; some other parameters are taken from the common estimates in the
literature; the rest are calibrated internally byminimizing the distances ofmoments in themodel
and in data.

The empirical moments are mostly obtained from two sources: the balance-sheet moments
are computed from public firms in Compustat using samples between 2010Q1-2019Q4, and
moments regarding the credit market are taken from Moody’s default and recovery database.
To match model moments to data, I interpret  8 as total assets of a firm and �8 as total debt
(short term debt + long term debt). To capture the realistic quantitative significance, I target on
size-weighted moments in data whenever possible.

20



Parameters in this model fall into two blocks: the financial block, including parameters governing
the credit market and regulations, and the macroeconomic block, including parameters governing
consumption, production, and firm dynamics. Below I discuss the calibration for these two
blocks respectively.

The financial block. It is of crucial importance for the model to capture the realistic level of
default risks and its distribution across firms. In data, default is a relatively rare event: the
average one-year default probability in data according to Moody’s default report is around
0.5%, dollar-weighted. Conceptually, default probabilities are affected by two factors: how far
an average firm is away from default, and how fast the firm diffuses. For the former, I match
the average (size-weighted) book leverage ratio to data (0.32 in Compustat) by calibrating the
debt issuance cost parameter to !1 = 4.13 , and for the latter I calibrate the capital quality shock
volatility � = 0.2 to hit the dollar-weighteddefault rate. An important stylized fact on the credit
market is that the high-yield market is relatively small in the U.S. According to the Mergent
FISD bond issuance data, in 2019 high-yield bonds account for only 15% of the total outstanding
corporate bonds in face value. I calibrate the IG/HY cutoff in one-year default probability &̄�.

so that in themodel-generated stationarydistribution, 15%of outstanding bonds are classified as
high-yield and subject to the HY constraint. As a result, the dollar-weighted default probability
for HY bonds is 3.33% (p.a.) in the model. It is close to its empirical counterpart, which ranges
between 2.0%-4.0% during normal times. At the steady state, the cutoff for HY bonds in terms
of leverage ratio is at 1̄�.

((
= 0.52. Notice that 1̄�. is not constant across transition dynamics as

the default probability changes with aggregate conditions even for firmswith the same leverage
ratio.

I assume the risk-weighting function AF(&) is a continuously increasing function of one-year-
forward default probability, which takes the form of

AF(&) = 0AF + 1AF&#AF , (4.1)

where 0AF , 1AF , !AF > 0 are parameters to be determined. I calibrate the AF using the risk
weights in the standardized approach in Basel II for banks, while the RBC for life insurance
companies essentially give very similar weights. 14 The Basel Accord gives a 20% risk weight to
corporate claimswith the highest rating (AA- or above), a 100% riskweight to claims ofmarginal
�. firms (BBB to BB-), and a 150% for claims with the lowest rating (below BB-). These provide
three data points for the AF function, AF(0) = 0.2, AF(&̄�.) = 1.0, and AF(1) = 1.5, so coefficients

14After the update in 2019, the weighting scheme for life risk-based capital (RBC) is essentially very close to
that in the Basel Accord. If the weight on the marginal HY bonds is normalized to 100%, their weighting scheme
gives the same weight as the Basel Accord for the riskiest bonds (150% for defaulted bonds), and 15% for the safest
bonds, slightly lower than that in Basel III.
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for AF are fully pinned down. Notice the unit of AF does not matter as long as it scales together
with the risk capacity constraint #̄', .

Figure 1 plots the credit market across leverage ratio 1. Panel (a) shows the distribution of bonds
across leverage ratio 1. The light area (left to the cutoff) displays the share of IG bonds, and
dark area (right) displays the share of HY bonds, which integrates to 15% by calibration. At
the steady state, firms default 1̄BB = 1.48. As the default boundary 3̄ is absorbing, no density
can be accumulated at the boundary, and density diminishes as 1 moves towards the default
boundary. Panel (b) presents risk weights at the steady state as a function of leverage. Risk
weights are computed from function (4.1). The input of the risk-weighting function, one-year
forward default probability, is plotted on the right y-axis. Even though IG bonds have close-to-
zero one-year default probability as in practice, the calibrated risk-weighting function is very
sensitive to small default risks and therefore have a steep curve to the left. For reference, I also
plot the five-year-forward default probability on the right y-axis. The marginal HY bonds have
a non-trivial default probability in five-years, at around 5%.

Figure 1: Credit Market

The risk-weight constraint #̄', is set to be marginally binding at the steady state. In other
words, #̄', is calibrated to the risk loading of the bond fund at the steady state #',

((
≡

, 2
((

∫
G2
((
(1)AF(&ℎ

((
(1))31+, 35

((
AF(1)

,�
((

. Therefore, the Lagrangian multiplier during the steady state

�',
((

= 0, but upon any negative shock the RW constraint will bind, and the intendedmechanism
will be activated. This choice reflects two considerations. On one hand, the steady state captures
the long-run equilibrium, or the “usual time”when the financial market functions frictionlessly;
on the other hand, we have considerable empirical evidence that even during usual times there
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exist non-credit-risk components in corporate bond yields15, part of which may reflect the
discounts due to risk-based regulations. Consistent with what this model would predict, the
non-credit-risk components in credit spreads also increase with credit risks (He and Milbradt,
2014; Chen et al., 2018). I pick the middle ground here by setting the risk-weight constraint to
be marginally binding. The high-yield constraint #̄�. is generally not binding at the usual time
for insurance companies and mutual funds (Ellul et al., 2011; Chernenko and Sunderam, 2012).
I experiment with different levels of the HY constraint for transition dynamics to understand
how the high-yield constraint affects the financing and investment of firms with heterogeneous
credit risks.

Other parameters in the financial block are calibrated as follows. The initial leverage for a
newborn firm is set to 0.29 according to Compustat. The calibration of the debt security
generally follows the literature (Demarzo and He, 2020; Gomes and Schmid, 2020). I calibrate
the debt amortization rate � to be 0.2, corresponding to an average maturity of 5 years. The
coupon rate is the same as the steady-state interest rate 2 = 4.77%, so the price of a risk-free
bond price is equal to 1 at the steady state. The average bankruptcy resolution duration is set
as one year, i.e., 1/�35 = 1. Upon resolution, capital is recovered at the rate of � = 0.7. Both
parameters are calibrated from Moody’s default and recovery database.

Table 1 summarizes the calibrated parameters for the financial block.

Table 1: Parameterization: the Financial block
Parameters Description Value Target/source
� Capital quality shock vol. 0.2 1yr default rate 0.5%
!1 Debt issuance cost 4.13 Average book leverage ratio 1̄ = 0.32
30 initial leverage 0.29 leverage ratio for newly listed firms
� Bond maturing rate 0.2 Average maturity 5 years
2 coupon rate 4.77% Risk-free bond price % = 1
&̄�. HY threshold in 1yr default prob. 1.5 × 10−6 High-yield share in face value ��.

���+��. = 15%
� Recovery rate of capital 0.7 Moody’s default report December 2019
1/�35 Avg. recovery period for defaulted bonds 1 (yr) Moody’s default and recovery database
#̄', Risk-weighted constraint 0.371 marginally binding at S.S.

(
�', = 0

)
#̄�. HY constraint 0.085 Impulse response
Notes. Rates are expressed in annualized values.

The macroeconomic block. I keep the calibration of the macroeconomic block as close to the
literature as possible. Thanks to scale independence, the aggregate economy preserves the form
of Cobb-Douglas function: .C = /C!C  

1−
C . I normalize annual output .BB = 1 as the numéraire.

I set  = 0.6 so the labor share in the economy is 60%. I further also set the steady state labor
supply to be 1 by calibrating the labor disutility parameter � = 1.16. This further implies the
wage at the steady state to be FBB = .BB

!BB
= 0.4. TFP at the steady state /BB is calibrated to

15There is a large literature on the liquidity component of credit spreads. See for example Longstaff et al. (2005);
Ellul et al. (2011); Mota (2021); He and Milbradt (2014); Chen et al. (2018); Li and Yu (2021).
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0.64, so firms’ earnings per unit of capital /̃BB = 0.133, consistent with the empirical estimate
from Compustat. With .BB ,/BB , and !BB determined, the aggregate capital stock is also pinned
down at  BB = 3. I set the initial capital for entrants  0 = 0.419 so the aggregate capital stock is
consistent with that implied from the stationary distribution.

The household discount rate is calibrated to � = 4.77%. The more patient households are, the
higher investment firms arewilling tomake. At the steady state, the average growth rate of firms
is 5.5% as its empirical counterpart in Compustat. The depreciation rate � = 4.5% is directly
calibrated from Compustat as the ratio of depreciation and amortization to total assets. Finally,
the exogenous exit rate for firms is set to � = 0.0667, corresponding to an average lifespan of
15 years for public firms. Several other parameters are common in the literature and therefore
calibrated accordingly.16 Table 2 summarizes the calibrated parameters for the macroeconomic
block.

Table 2: Parameterization: the Macroeconomic Block
Parameters Description Value Target
Preferences
1/� IES 1.0 Literature
1/� Frisch elasticity 1.0 Literature
� Labor disutility 1.16 Normalize labor supply to 1at S.S.
� Discount rate 4.77% Average asset growth rate of 5.5%
Technology
 Labor share 0.6 Literature
/BB TFP at the S.S. 0.64 EBITDA/asset ratio 0.133
): Capital adj. cost 4.0 Literature
� Depreciation rate 0.045 Depreciation to asset in Compustats
Entry and Exit
� Exogenous exit rate 0.0667 Average lifespan 15 years
 0 Capital for entrants 0.419 Capital stock at the S.S.  BB = 3
Government
�̄� Gov. debt at the S.S. 1.0 debt/GDP around 100% in 2019
� Corporate tax rate 0.25 Literature
Notes. Rates are expressed in annualized values. If not otherwise specified, firm-level
moments are sourced from public firms in Compustat from 2010Q1-2019Q4.

16These are the intertemporal elasticity of substitution 1
� = 1, the Frisch elasticity of labor supply 1

� = 1, capital
adjustment cost parameter !: = 4, corporate tax rate � = 0.25. Similar calibrations can be found in, e.g., Philippon
(2009); Gomes et al. (2016); Kaplan et al. (2020); Gomes and Schmid (2020).
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5 Numerical Experiments

I organize my numerical experiments around different policy and regulation scenarios. In
Section 5.1, I hit the model with a crisis shock and study the transition dynamics. The crisis
shock is composed of a productivity shock and an uncertainty shock, mimicking the COVID-19
recession in March 2020.17 I consider the transition dynamics under different scenarios where
the constraints are activated one by one. In Section 5.2, I further consider a scenario where
the government also announces at C = 0 an unexpected plan of interventions in the credit
market. I use this scenario to evaluate the effect of the unprecedented corporate bond purchase
programs conducted by the Federal Reserve in March 2020. I also consider alternative policies
in comparison.

5.1 Transition Dynamics under Different Regulation Scenarios

Now I shock the model at the steady state with an unanticipated probability-zero crisis. The
crisis is modeled as a sudden drop in aggregate TFP /0 together with an increase in the variance
of idiosyncratic shocks �2

0. After the initial impact, the evolutions of /C and �2
C are deterministic

and perfectly anticipated. In other words, it is an “MIT” shock. I calibrate the shocks so that
they mimic the market’s expectation at the beginning of the COVID-19 recession in March 2020.
Specifically, the TFP /0 drops by around 10% to match the 10% drop in GDP in 2020Q2, and
the volatility �2

0 jumps up by 20% to match the average high-yield default probability of 6% at
the peak of the crisis. Both shocks persist at the initial level for one year, and then mean reverts
following an Ornstein-Uhlenbeck process:

3/C = � (/BB − /C) 3C

3�2
C = �

(
�2
BB − �2

C

)
3C,

where � is set to 1.5 so that the shocks almost completely die down after 4 years. Figure 2 plots
the shock paths during transition dynamics, expressed as deviations from steady state values.

I consider three regulatory scenarios with constraints activated one by one: an unconstrained
scenario, where both constraints are turned off, an RW-constrained scenario, where the risk-
weight constraint is in effect while the high-yield constraint is slack, and finally an RW&HY-
constrained scenario where both constraints are active. The unconstrained scenario can be

17Due to the multifaceted nature of the COVID-19 shock, the productivity and uncertainty shock in this model is
only a reduced-form simplification. A full characterization of the economy during the pandemic falls beyond the
scope of this paper. See e.g. Guerrieri et al. (2020); Kaplan et al. (2020); Alvarez et al. (2021) for studies on other
aspects of the pandemic-induced recession.

25



Figure 2: Shocks during transition dynamics

interpreted as the counterfactual of a regulatory regime without risk-based constraints, or the
effect of a countercyclical regulatory regime, which automatically relaxes the constraints in
economic downturns. 18

Figure 3 shows the . the risk loading
(
#',

)
in panel (a) and the share of high-yield bonds

in the portfolio
(
#�.

)
in panel (b) during the transition under different scenarios. Under the

unconstrained scenario (dotted green lines), both the risk loading and the HY share shoot up
upon the crisis shock. Default probabilities endogenously increase due to a lower productivity
and a higher uncertainty, so bonds have higher risk weights conditional on the same states
(leverage ratio 1), and some bonds previously near the high-yield threshold are downgraded
immediately after the shock. Under the RW-constrained scenario (dashed blue lines), the risk-
weight constraint #̄', is set at the steady state level, limiting the total risk loading of bond
investors. To fit in the limited risk capacity, bonds with higher risk weights are traded at
larger discounts, as will be shown below. The risk-capacity constraint also reduces the share of
high-yield bonds in the portfolio compared to the unconstrained case, since high-yield bonds
are assigned with larger risk weights and hence larger discounts. In the RW&HY-constrained
scenario (solid blue lines), the HY constraint is set to #̄�. = 0.85 so that it binds for the first
quarter after the shock.

Figure 4 displays the impulse responses in the credit market. Under the unconstrained scenario,
the responses are relatively mild: the default threshold drops very minimally upon impact.19

18For example, Basel III include a countercyclical capital bufferwhichmayput inplace a larger capital requirement
for banks when national authorities determine that the credit growth is excessive. It has not been activated in most
jurisdictions including the U.S.

19When the default threshold unexpectedly drop, firms with leverages higher than the new default threshold
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Figure 3: Shocks during transition dynamics

The high-yield threshold in terms of the leverage ratio is more responsive, falling from 0.52 to
0.46. The average default probability increases from the steady state value of 0.5% to 0.65%, and
the average default probability for the high-yield bond increases to 4.4%. The responses from
yields are positive but also small.

The constraints have profound impacts on the credit market. With the risk-weight constraint
in place (dash light-blue lines), the average yields jump to around 8% upon shock for the
investment grade bonds (panel c), and 15% for the high-yield (panel f). Higher yields further
exacerbates the financial condition of firms, resulting in higher default probabilities. Defaulted
bonds are subject to the strictest constraint and take the largest haircuts, so for near-default
firms it is harder for them to roll over their debt. The default threshold is therefore significantly
lower.

The impact of theRWconstraint is highlyheterogeneous acrossfirms. The increases in yields and
default probabilities aremuch smaller for IG firms relative to those for HY firms. The additional
HY constraint further increases inequality across firms. With both constraints binding (solid
dark-blue lines), high-yield bonds are further discounted to meet both constraints. The average
yield for high-yield firms increases from 15% to 17.5%. However, the average yield for IG
bonds is actually reduced relative to the single-constraint case. The reduction in the yield of IG

will default immediately. I assume a same measure of firms are also reborn immediately with the same initial
capital and leverage to keep the total measure constant. As shown in Figure 1, the share of firms close to the default
boundary is very small so different treatments of the immediate default is not quantitatively important, even under
the constrained scenarios.
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bonds is the force of a simple general-equilibrium mechanism: when the demand for a good
is suppressed, the price for its substitute increases. In this model, this force manifests itself
through the no-arbitrage condition, which requires the total bond portfolio to offer an average
return of A 5C . Thus, when HY bonds offer a higher return, IG bonds have to offer a lower return
to balance it out.

Figure 4: The Credit Market under Different Regulatory Scenarios

To further shed light on the vast heterogeneity across firms, I plot firms’ value and policy
functions upon impact in Figure 5.20 Before commenting on the responses upon impact, it is
helpful to discuss the overall patterns at the steady state (dotted green lines) as the baseline. The
equity value per unit of capital (Panel a) decreases as leverage increases, since highly leveraged
firms face higher probabilities of defaulting and exiting with zero values. In parallel, the bond
yield increase with leverage, reflecting higher credit spreads due to default risks. Panel (c) plots
the rate of bond issuance. Firms with higher leverage issue more debt for two reasons: they
have more maturing debt to roll over. To finance the same level of investment, they also need
to issue more debt since their bonds are cheaper. Panel (d) displays the investment rate. Firms
with relatively low leverage (1 < 0.3 at the S.S.) are financially unconstrained so their investment
is close to the first-best level. As leverage increases, firms cut off investment for two reasons:
The financial constraint and high yields are prohibitive for investment; close-to-default also
makes investment less attractive to the equity holder, because if the firm defaults, the benefits
of additional capital are captured by the debt holders. Instead, highly leveraged firms prefer to
disinvest and pay out dividends. This is the well-known debt overhangmechanism.

20I cut the x-axis at 1.0 for visibility. As shown in the distribution, there are very few firms with leverage higher
than one, so their responses are not influential for aggregates.
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Upon impact, the shock pushes down equity values and investment. Compared to the uncon-
strained counterpart (green dash-dot lines), in the constrained scenario (blue lines), the equity
value function E rotate clockwise, i.e., the equity values for low-leverage firms are increased
by constraints while those for high-leverage firms are decreased. Effectively, safe firms are
subsidized by constraints while risky firms are suppressed. The yield function gives a more
explicit indication of the redistributional effect of constraints. With the RW constraint, though
most firms are facing higher yields on the credit market, the yields for the safest firms are
actually lower; some of them even face lower yields than the steady state. The HY constraint
adds another distortion to the credit market. The yield start at a lower level for IG firms, and as
leverage approaches the high-yield threshold, the yield increases steeply and exceeds the single-
constraint counterpart. The change in the financing cost is reflected in firms’ policy functions in
the lower panels. With binding constraints and therefore a higher financing cost, most firms cut
off borrowing and investment. However, the safest firms even increase their investment back to
the steady-state level.

Figure 5: Value and Policy Functions upon Impact

I proceed to evaluate the aggregate effect on investment. Figure 6 displays the time paths of
investment by ratings, as percent deviations from the steady state. I define AAA as the safest
firms in thewhole distribution, i.e., firmswith leverage 1 = 0. Under the unconstrained scenario,
investment drop similarly by 12-15% for all three ratings. Consistent with the policy function
plotted above, the RW constraint increases investment of AAA firms at the expenses of other IG
and HY firms. IG firms invest 13% less than the unconstrained scenario, and HY firms invest
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60% less. As the shock dies down, constraints become less binding, and paths of investment
gradually converge back to the unconstrained scenario in one year. The HY constraint further
suppresses HY firms’ investment by 10%, and slightly improves that by IG firms.

Figure 6: Investment by Ratings

Figure 7 displays the percent deviations of aggregate variables. The risk-weight constraint has
a quantitatively large effect on aggregate investment: the investment drops by 12% under the
unconstrained scenario, and more than 25% under the risk-weight constraint. The high-yield
constraint, on the other hand, has a very minimal incremental effect. If anything, it increases
aggregate investment. As I show above, the HY constraint redistributes from high-yield firms
to investment-grade firms. High-yield firms have lower investment propensities compared to
investment-grade firms due to debt overhang. Therefore, by financially suppressing the low-
investment-motive firms and subsidizing the high-investment-motive firms, the HY constraint
increases the total investment. The effect is less noticeable, since by calibration high-yield firms
have a small market share.

Panel (b) displays the cumulative effect of the reduction on investment. Constraints lower the
capital stock in one year by 0.5% compared to the unconstrained case. The disinvested capital is
eventually consumeddue tomarket clearing, leading to a higher consumption in the constrained
cases. A higher consumption reduces labor supply and therefore total output, which drops by
10% under the constrained scenario, compared to 7.5% without constraints.
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Figure 7: Transition Dynamics of Aggregates

5.2 Credit Market Intervention

In this section I evaluate the effect of the credit market intervention programs announced by
the Federal Reserve in March 2020. In response to severe credit market meltdown, the Federal
Reserve created two credit facilities to support the credit market: the PrimaryMarket Corporate
Credit Facility (PMCCF), which directly made loans to companies, and the Secondary Market
Corporate Credit Facility (SMCCF), which purchases corporate bonds or corporate bond ETFs
from the secondary market. Both CCFs target on investment-grade bonds and the combined
authorized size is up to 750 billion.

Through the lens of this model, the credit market intervention works through relaxing the
risk constraints of financial intermediaries. As this model does not feature the distinction
between the primary and the secondary markets, I bundle these two facilities together in the
following analysis. The intervention programs are modeled as the government purchasing
corporate bonds financed by the government bond. The government made an unanticipated
announcement on the intervention plan at C = 0 when the shock hits. The intervention program
can be described by two objects: the Fed’s demand function for corporate bonds G 5 43C (1), and
the outstanding amount of bond purchased by the Fed � 5 43C . The government budget constraint
is modified as:

A�C �
�
C +

3�
5 43

C

3C
+ )A0=B 5 4AC =

3��C
3C
+ )0GC + � 5 43C

∫
G
5 43

C (1)A
2
C (1)31.
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The purchase schedule is as follows. Starting from C = 0, the government linearly increases
�
5 43

C from 0 until reaching the maximum capacity �̄ 5 43 at C = 0.5, continues to maintain at the
maximum capacity until C = 2, and then slowly winds down the portfolio at a constant rate
until C = 5. The maximum capacity is 750 billion, or �̄ 5 43 = 0.375, with the annual GDP as the
numéraire. To mimic the demand function of the Fed in practice, I set G 5 43C (1) proportional to
the market share of bonds in the investment grade at the steady state. 21 Figure 8 displays the
purchase schedule by the Fed. I further assume that, as before, the government commits to a
fiscal policy that fixes the level of net liability, i.e., ��C −�

5 43

C = �̄. The government earns spreads
between constrained corporate bonds and the government bond, and it transfers the proceeds
to the household in a lump-sum fashion.

Figure 8: The Path of the Outstanding Amount Purchased

I use the RW-constrained scenario as the laissez-faire scenario, and study the additional effect
of credit facilities. Figure 9 shows the responses in the credit market. The stimulus generates
a strong anticipation effect. At time 0 under the stimulus scenario (solid blue lines), the gov-
ernment announces the stimulus plan but has not purchased any bond yet. Still, the one-year
forward default probabilities are reduced upon the announcement relative to the laissez-faire
scenario, as investors rationally expect that the stimulus relaxes the RWconstraint, and improves
the credit market condition in the near future. Lower default probabilities lead to lower risk
weights, which further relaxes the RW constraint, as predicted by the accelerating mechanism.
Therefore, the average yields in the credit market drop immediately upon the announcement,
relative to laissez-faire counterparts.22 The effects of stimulus continue to build up in the first

21Initially, bothCCFswere only open to investment-grade companies. OnApril 9, the Fed expanded the eligibility
to “fallen angels“, i.e., firms that were rated as investment grade in March 22rd, 2020. The SMCCF purchases ETFs
and bonds based on the broad market index to obtain broad exposure to the market for U.S. corporate bonds.

22Such announcement effects are also observed in reality. After the announcement of intervention plans on
March 23rd, 2020, the investment-grade credit spreads narrowed 20 basis points on the day, and continue to fall
100 basis points in the next two weeks. The real purchase only started 2 months later. See Gilchrist et al. (2020) for
a more careful empirical analysis on the effects of SMCCFs.
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year as the Fed increases purchases.

Figure 9: Shocks during transition dynamics

In aggregate, I find that the stimulus significantly speeds up the recovery from the crisis, as
shown in Figure 10. The drop in investment upon shock is smaller with stimulus, and it returns
to the steady state level more quickly. The faster recovery in investment also speeds up the
recovery in total outputs and reduces the dip in capital stock.

Counterfactual policies. I also evaluate whether alternative policies can achieve better out-
comes. In particular, I consider a purchase plan that targets only on high-yield bonds. There
are several reasons why this policy may have its merits. First, high-yield bonds have higher
risk weights, so with the same amount of stimulus, purchasing high-yield bonds can be more
efficient at reducing the risk loading of the bond investors. In other words, it may have better
“bang for the buck”. Second, the high-yield constraint may also bind at the peak of the crisis,
which has local effects on high-yield firms and cannot be alleviated by an IG-targeting policy.
Hence below I compare two policies with the same path of � 5 43C but different demand functions
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Figure 10: Shocks during transition dynamics

G 5 43(1). The laissez-faire benchmark here has both constraints binding to allow for the local
effect on HY firms.

My quantitative analysis shows that the gain from an HY-targeting policy is very negligible
in terms of aggregates. It indeed lowers the yields for high-yield bonds more than does the
IG-targeting policy (panel d of Figure 11), but it has hardly any effect on the investment-grade
yields. As shown in previous section, it is the IG firmswhose investmentmatters for aggregates,
as they are quantitatively large, and sensitive to financial costs. HY firms, on the contrary, are
less sensitive to financing costs, and quantitatively have a much smaller role in the aggregate
economy. Indeed, as shown in Figure 12, even though investment by high-yield firms drops
slightly less under the HY-targeting policy, it does not affect aggregate investment and output in
any significantway. In thismodel, there is no additional cost for purchasingHY bonds versus IG
bonds, as all idiosyncratic shocks are diversified away in the portfolio. In real world, however,
purchasing high-yield bonds will let the Fed be exposed to more aggregate risks. Given the
small gain, a policymaker who cares mostly about aggregates may not find the HY-targeting
policy particularly appealing.
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Figure 11: The Credit Market under Different Policy Rules

6 Conclusions

In this paper, I study the role of risk-based regulations in the macroeconomy. I find that risk-
based regulations amplify the economic downturn like the classic financial accelerator. The drop
in aggregate investment increases from 10% under the unconstrained scenario to 25% under the
constrained scenarios. Importantly, effects are heterogeneous across firms: Risky firms whose
bonds are more tightly constrained take larger hits from binding constraints than safe firms; the
safest firms are even subsidized by such constraints. I use this framework to study the credit
market intervention policies as conducted by the Fed in March 2020. I find that the intervention
policies speed up the recovery of the economy by relaxing the risk constraints.

It should be cautioned that even though I evaluate the outcomes of regulations and stimulus
policies, results here should be interpreted as positive instead of normative. As this model does
not feature aggregate risks and all idiosyncratic shocks are diversified away at the aggregate
level, there is no endogenous reason for the mutual fund to be regulated. The benefits of risk
regulations, such as retail investor protection, micro- and macro-prudential motives, etc., are
outside of the model. This model is able to evaluate the cost of such regulations, but does not
directly answer the question whether they should be implemented at the first place. Similarly,
the costs of government interventions are also outside of the model, so I only evaluate the
potential benefits of the intervention policies but not the trade-offs. Nevertheless, I believe a
positive analysis of policies can still be informative in guiding future policy designs. I leave a
normative analysis for future work.
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Figure 12: Aggregates under Different Policy Rules
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A Full Characterization of Equilibrium

A.1 Scale Independence for Firms’ Problem

Below I give the proof to Proposition 1, restated here for convenience.

Proposition. If %C( , �) is homogeneous of degree 0 in ( , �), then the value function+C( , �), optimal
investment � ( , �) and debt issuance �( , �) are homogeneous of degree 1 in ( , �). The default region
can be defined in terms of 1. Specifically, we have

+C( , �) = EC(1) 
�C( , �) = �C (1) 
�C ( , �) = 3C(1) 

'
35

C = {1 ∈ R|max
�,3

ΠC(�, 3 |1, 1) < 0}.

Proof. The proof amounts to deriving equity’s HJB equation in terms of the leverage ratio 1.
Conjecture that the value function is in the form of+C( , �) = EC(1) , where EC(1) is the average
value of equity per unit of capital, or equity’s average Q. We have:

% +( , �) = E(1) − 1E′(1)
%�+( , �) = E′(1)

%  +( , �) = E′′(1)
12

 

Plug it in (3.10), and use %( � ) ≡ %( , �), using multiple dispatch23, we have:

(AC + �)EC(1) = max
�,3

�C(�, 3 |1) +
(
EC(1) − 1E′C(1)

)
(� − �) + E′C(1) (3 − �1) +

1
2E
′′
C (1)12�2 + �max {1 − 1, 0}  + %CEC(1) 

0 ≤ �C(�, 3 |1) ≡ (1 − �) /̃C + � (� + 21) − � − ! (�) − (� + 2)1 + %C (1) 3 − !�(3),

where � ≡ �
 and 3 ≡ �

 , and �C(�, 3 |1) ≡ ΠC(�, 3 |1, 1). As one-to-one mappings, these changes
of variable do not affect the optimal control problem. Cancel out  and rearrange, we have the

23Multiple dispatch is a design of some programming languages (e.g. Julia) that the invocation (dispatch) of a
particular version of the called function depends on its arguments. It is also commonly referred to as an abuse of
notation in the literature.
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HJB equation in terms of 1:

(AC + �)EC(1) = max
�,1

� (�, 3 |1) + (� − �) EC(1)+

E′C(1) (3 − (� + � − �)1) +
1
2E
′′
C (1)�212 + �max {1 − 1, 0} + %CEC(1).

The default region follows directly from the homogeneity of ΠC :

R35

C =

{
( , �) ∈ R2��max

� ,�
ΠC (� , � | , �) < 0

}
=

{
( , 1 ) ∈ R2��max

� ,�
�C

(
�

 
,
�

 
|1
)
 < 0

}
'
35

C = {1 ∈ R|max
�,3

�C(�, 3 |1) < 0}.

�

The proof to Corollary (1) immediately follows from the definition of '35C .

Corollary. If %C( , �) is homogeneous of degree 0 in ( , �) and weakly decreasing and continuous in
leverage 1, then there exists a threshold 1̄C such that the default region is '35C = {1 ∈ R|1 > 1̄C}.

Proof. Plug in the quadratic functional forms of adjustment costs, the default region is given as

'
35

C = {1 ∈ ' |<0G38EC(1) < 0}

<0G38EC(1) ≡ (1 − �)
(
/̃C − 21 − �

)
− �1 (1 − %C(1)) +

%2
C (1)

2!1
+ 1

2!:
.

For 1 > 0, the maximum dividend is strictly decreasing in 1, provided a weakly decreasing %C .
We alsohave<0G38EC(0) > 0, lim3→∞<0G38EC(1) < 0, so there exist 1̄C such that<0G38EC(1̄C) = 0,
and <0G38EC(1) < 0 for 1 > 1̄C . �

A.2 Distribution

For grid efficiency, I index firms in the space (1,  ) when analyzing the distribution. Denote
�C(1,  ) as distribution of firms at time C, and 6C (3,  ) as the corresponding density function.
Givenfirms’ optimalpolicy function�3(3), thedistributionwithin thenon-default region evolves
according to the following Kolmogorov Forward Equation (KFE):

36C (1,  )
3C

= −�6C(1,  )−%3
(
6C(1,  )�1C (1)

)
−% (6C �C(1) )+

1
2%

2
11

(
6C�

212
)
+1

2%  
(
6C�

2 2
)
+%2

1 

(
6C�

21 
)

(A.1)
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The default boundary (3̄,  ) is an absorbing-reinjection boundary, so that firms hitting the
default boundary are immediately reinjected back to the state for entrants (10,  0). In order to
induce a stationary distribution, I also assume I also assume a lower bound on capital K and
an acquisition mechanism. Once a firm’s capital is reduced to the lower bound, they will be
acquired at the equity value and reinjected as a new entrant. The frequency of acquisition in
the baseline calibration is almost trivial.

Notice that unlike the value equation, the density function does not preserve homogeneity
because of the correlation between 3 and  , as shown in the cross-derivative term as well as the
exit/entry process, so we need to solve the KFE on the two-dimensional space.

On a numerical note, the cross-derivative in the KFE also poses another challenge for the
numerical algorithm. As well-known to the numerical PDE literature, a naive finite-difference
scheme to approximate the cross derivative does not satisfy themonotonicity condition required
for its stability. I use the local coordinate rotation method introduced by Ma and Forsyth (2016)
to overcome this issue.24

A.3 Default Probabilities

I define &̃)
C (1) as the default probability of firmwith leverage 1 at time Cbefore time ).&̃)

C (1) can
be expressed as the conditional expectation of a default indicator function:

&̃)
C (1) = EC

[
4−�()35−C)I)

34 5 0D;C43
|1C = 1

]
.

where )35 is the stopping time when the firm first enters the default region. The term 4−�()35−C)
reflects the probability of exogenous exits before ). The conditional expectation above can be
computed recursively by the Feynman–Kac formula:

%C&̃
)
C (1) + %1&̃)

C (1)�1C (1) +
1
2%

2
11
EC(1)�212 − �&̃C(1) = 0,

with boundary conditions such that the default probability is 1 if the firm already entered the
default region:

&̃)
C (1̄C) = 1 ∀C ≤ ).

A.4 Scale Independence for Bond Pricing

In this section I show the scale independence in the bond pricing function. Formally, suppose
firms’ policy functions are homogeneous of degree one, i.e., �C( , �) = �C(1) and �C( , �) =

24Other methods are also available. See, e.g., d’Avernas and Vandeweyer (2021).
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3C(1) , and default region is characterized by leverage 1, '35C = {1 ∈ ' |<0G38EC(1) < 0}, then
bond pricing function is homogeneous of degree zero. This result, together with Proposition 1,
establishes a symmetric equilibrium between the bond investor and firms.

To show the scale independence in price, I start from the definition of the price of firms

%C( , �) = EC

[∫ )35

C

4−
∫ ℎ

C
(A2�(1)+�)3� (2 + �) 3� + 4−

∫ )35
C
(A2�(1)+�)3�%

35

)35
(�)35
 )35
)| C =  , �C = �

]
.

As I focus on recursive equilibrium, this equation can be written as the HJB equation:

(A2�(1) + �)%C( , �) − %C%C( , �) = 2 + � + % %C( , �)� + %�%C( , �) (� − ��) + %2
  %C( , �)�

2 2,

(A.2)
with boundary condition %C

(
 , 1̄C 

)
= %

35

C

(
1̄C

)
.

Guess %( , �) = %( � ). The boundary condition obviously satisfies this condition, as shown in
Section A.5. Plug the guess in A.2 and cancels out  , we have:(

A2C (1) + �
)
%C(1) = 2 + � + %1%C(1)�1C (1) +

1
2%

2
11
%C(1)12�2 + %C%C(1). (A.3)

Therefore, the bond price can indeed be solved as a function of 1 alone.

A.5 Defaulted bonds

In this section, I characterize defaulted bond price and discuss the market clearing condition.
Defaulted bonds are modeled with sluggish payouts. A defaulted bond pays no coupon and
awaits bankruptcy resolution, which happens at a Poisson rate �35 . The Poisson process captures
the legal uncertainty around bankruptcy. Upon resolution, capital of the defaulted firm is
liquidated at the recovery rate � to pay back debt holders. The eventual payout per unit of bond
is � 

� = �
1
. Notice that when the liquidation happens instantaneously, the price of the defaulted

bond is �
1
, constant across time. This feature is counterfactual as the literature has shown that

during bad times the prices of defaulted bonds are particularly low (see, e.g., Jankowitsch et al.,
2014). More importantly, bonds close to default may be priced even lower than defaulted bonds,
as the former are subject to regulatory constraints while the latter is an immediate cash payout
�
1
.

To price defaulted bonds, denote %35C (1) as the price of the defaulted bond with leverage 1.
The homogeneity in ( , �) follows a similar argument as in Appendix A.4. 25 Its return

25As the default threshold 1̄C can be time-varying, the defaulted firms may also have different leverage 1.
However, their assets are frozen so their leverage is fixed at the time of default.
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3'
35

C (1) =
(
�
1
−%35C (1)

)
3J 35

C +%C%
35

C (1)

%
35

C (1)
, and the expected return is thus given as

A
35

C (1) =
�35

(
�
1
− %35C (1)

)
+ 3

3C
%
35

C (1)

%
35

C (1)
. (A.4)

Notice that once the path of return A35C (1) is known, this equation gives an ODE of %35C (1) as a
function of time for each leverage ratio 1. Together with terminal conditions for %35C (1), these
ODEs pin down the defaulted bond prices.

I assume the risk weight of defaulted bonds is constant, AF(1), and they are treated as high-
yield bonds subject to the HY constraint. The discount rate for defaulted bonds is therefore
leverage-independent and given by:

A
35

C = A�C + �',C AF(1) + ��.C (A.5)

Combine (A.5) and (A.4), we can guess and verify that %35C (1) can be written as %35C (1) = %̃
35

C
1
1
,

where %̃35C is the price of one unit of distressed capital, solved from the ODE below:

A
35

C %̃
35

C = %C %̃
35

C + �
35

(
� − %̃35C

)
.

To characterize themarket clearing condition for defaulted bonds, observe that regardless of the
leverage of the defaulted bonds, the total wealth invested in defaulted bonds is always equal to
the total value of the distressed capital outstanding. Hence we only need to keep track of the
defaulted capital, regardless of the respective leverage. Denote  35C the distressed capital stock.
It follows the law of motion

3 
35

C = −�35 35C +
∫

 �C(1̄C ,  )3 ,

where where �C(1̄C ,  ) is the density current flowing through the default threshold 1̄C . Then the
market clearing for defaulted bonds require

,
35

C =  
35

C %̃
35

C .

45


	Introduction
	Institutional Background
	Model
	Household
	Firms
	Bond Investors
	Government
	Equilibrium

	Parameterization
	Numerical Experiments 
	Transition Dynamics under Different Regulation Scenarios
	Credit Market Intervention

	Conclusions
	Full Characterization of Equilibrium
	Scale Independence for Firms' Problem
	Distribution
	Default Probabilities
	Scale Independence for Bond Pricing
	Defaulted bonds


