ANATOMY OF THE TREASURY MARKET: WHO MOVES YIELDS?

Manav Chaudhary (Chicago), Zhiyu Julie Fu (WashU Olin), Haonan Zhou (HKU)

New Insights

WHICH INVESTORS DRIVE YIELDS AND THIS EVOLVED OVER TIME?

Widely recognized investor demand is a key determinant of Treasury yields

...but how much does each investor drive yields, and how has this evolved?

Standard approaches to Treasury market not suitable,

- Term-structure/factor models silent on the heterogeneity
- Models zooming on specific investors limited in its aggregate implications

Calls for a unified framework of Treasury price and heterogeneous investors

Identification

New Insights

A FRAMEWORK FOR THE U.S. TREASURY MARKET'S YIELD

An equilibrium-pricing framework for the U.S. Treasury market

- A parsimonious yet flexible approach to model different players jointly
- A machinery to decompose changes in yields by macro factors \times investors

Provides machinery to uncover the "macrostucture" of the Treasury market:

- Who provides liquidity, and how effective is the market at accomodaing demand?
- How has the Treasury market ecosystem evolved after the Great Recession?
- Why do Treasuries appreciate during bad times? Who's fleeing to safety?

Identification

New Insights

UNCOVERING THE "MACROSTRUCTURE" OF THE TREASURY MARKET

- 1. Quantifying investors' sensitivities to yields and factors
 - Inelastic market: macro multiplier of 1 (\uparrow 1% Q \Longrightarrow \uparrow 1% P or \downarrow 15*bp* yld)
 - Investor-time heterogeneity reveals changing nature of liquidity provision

Identification

New Insights

UNCOVERING THE "MACROSTRUCTURE" OF THE TREASURY MARKET

- 1. Quantifying investors' sensitivities to yields and factors
 - Inelastic market: macro multiplier of 1 (\uparrow 1% Q \Longrightarrow \uparrow 1% P or \downarrow 15*bp* yld)
 - Investor-time heterogeneity reveals changing nature of liquidity provision
- 2. Decomposing yield changes into their investor-level drivers
 - Great Recession marks structural change in who drives yields...
 - Foreign investors have stopped playing a big role, but the Fed now does

Identification

New Insights

UNCOVERING THE "MACROSTRUCTURE" OF THE TREASURY MARKET

- 1. Quantifying investors' sensitivities to yields and factors
 - Inelastic market: macro multiplier of 1 (\uparrow 1% Q \Longrightarrow \uparrow 1% P or \downarrow 15*bp* yld)
 - Investor-time heterogeneity reveals changing nature of liquidity provision

2. Decomposing yield changes into their investor-level drivers

- Great Recession marks structural change in who drives yields...
- Foreign investors have stopped playing a big role, but the Fed now does

3. Zooming into flight-to-safety episodes

- Domestic, rather than foreign investors, contribute most to rising yields
- Domestic seem to fly-to-quality, while foreigners use Treasuries as a hedge

Identification

New Insights

RELATED LITERATURE

- Drivers of yields and investor dynamics in the Treasury markets:
 - Pricing: Cochrane and Piazzesi, 2005; Joslin, Priebsch, and Singleton, 2014; Moench and Soofi-Siavash, 2022; Vayanos and Vila, 2021
 - Foreign investors: Warnock and Warnock, 2009; Ahmed and Rebucci, 2024
 - ▶ The Fed and the QE: Gagnon, Raskin, Remache, and Sack, 2011; Hamilton and Wu, 2012
- Estimating demand-based asset pricing models:
 - Methodology: Koijen and Yogo, 2019; Gabaix and Koijen, 2024; Qian, 2024; Chodorow-Reich, Gabaix, Koijen, and Viviano, 2024
 - Application to government bond markets: Koijen, Koulischer, Nguyen, and Yogo, 2017; Fang, Hardy, and Lewis, 2022; Jansen, Li, and Schmid, 2024; Zhou, 2023; Eren, Schrimpf, and Xia, 2023; Jansen, Li, and Schmid, 2024; Jiang, Richmond, and Zhang, 2024

- Model Framework
- Estimation and Identification
- Understanding macrostructure of the Treasury market:
 - **1** Quantifying investors' sensitivities
 - Decomposing yield changes
 - **3** Zooming into flight-to-safety episodes

Identification

New Insights

THE LANDSCAPE OF U.S. TREASURY MARKET

Data: Financial Accounts + Treasury Internatial Capital + Call Reports

• Sectors are mutually exclusive + collectively exhaustive of market activity **Figure 1:** Quarterly sector-level Treasury notes and bonds holdings

New Insights

MODEL DEMAND FOR TREASURIES FOR DIFFERENT INVESTORS

Major challenge: different sectors face different portfolio choice problems

• What is the correct objective?

e.g. mean-variance, bond-in-the-utility, mimizing funding ratio volatility...

• How to model multitude of constraints?

e.g. benchmarks, capital requirement, internal value-at-risk...

New Insights

MODEL DEMAND FOR TREASURIES FOR DIFFERENT INVESTORS

Major challenge: different sectors face different portfolio choice problems

• What is the correct objective?

e.g. mean-variance, bond-in-the-utility, mimizing funding ratio volatility...

• How to model multitude of constraints?

e.g. benchmarks, capital requirement, internal value-at-risk...

Solution: first-order log-linearize of any sector *i*'s portfolio decision + difference:

 ζ_i and $\nu_{i,t}$ are sector-specific functions of deep parameters & steady state values

Introduction

Model Framework

Identification

New Insights

MODELLING DEMAND SHIFTERS

$$\Delta q_{i,t} = -\zeta_i \Delta p_t + \nu_{i,t}$$

Introduction

Model Framework

Identification

New Insights

MODELLING DEMAND SHIFTERS

 $\Delta q_{i,t} = -\zeta_i \Delta p_t + \bar{q}_i + \underbrace{\lambda_i \eta_t}_{\lambda_i \eta_t}$ +u_{i,t} common factors idio. shocks

Identification

New Insights

MODELLING DEMAND SHIFTERS

Observed factors: measure with,

- Macro-financial: inflation level, and innovations in VIX and dollar indicies
- <u>Policy</u>: Fed fund change, lagged net supply, scheduled Fed purchases
- Expectations: change in 1yr and 10yr SPF yield consensus forecast

Identification

New Insights

MODELLING DEMAND SHIFTERS

Observed factors: measure with,

- Macro-financial: inflation level, and innovations in VIX and dollar indicies
- Policy: Fed fund change, lagged net supply, scheduled Fed purchases
- Expectations: change in 1yr and 10yr SPF yield consensus forecast

Unobservabed factors: measure with principal components on residual flows

Identification

New Insights

MODELLING DEMAND SHIFTERS

Observed factors: measure with,

- Macro-financial: inflation level, and innovations in VIX and dollar indicies
- <u>Policy</u>: Fed fund change, lagged net supply, scheduled Fed purchases
- Expectations: change in 1yr and 10yr SPF yield consensus forecast

Unobservabed factors: measure with principal components on residual flows

Idiosyncratic sector-specific shocks: e.g., wealth shocks, private info, regulations

Identification

New Insights

RELATING INVESTOR DEMAND TO EQUILIBRIUM PRICES

1. Estimate sector-level demand curves: $\Delta q_{i,t} = -\zeta_i \Delta p_t + \bar{q}_i + \lambda_i \eta_t + u_{i,t}$

2. Apply market clearing: total change in flows (incl. supply) is zero,

$$\sum_{i \in sectors} S_i \Delta q_{i,t} = 0$$

where S_i is the sector *i* holding share of the Treasury market.

3. Re-arrange to relate price changes to sector-specific demand shifters:

$$\Delta p_{t} = \frac{1}{\zeta_{\mathsf{S}}} \sum_{i \in \text{sectors}} \mathsf{S}_{i} \left(\bar{q}_{i} + \lambda_{i} \eta_{t} + u_{i,t} \right)$$

where $\zeta_{S} \equiv \sum S_{i}\zeta_{i}$.

Identification

New Insights

RELATING INVESTOR DEMAND TO EQUILIBRIUM PRICES

1. Estimate sector-level demand curves: $\Delta q_{i,t} = -\zeta_i \Delta p_t + \bar{q}_i + \lambda_i \eta_t + u_{i,t}$

2. Apply market clearing: total change in flows (incl. supply) is zero,

$$\sum_{\in sectors} S_i \Delta q_{i,t} = 0$$

where S_i is the sector *i* holding share of the Treasury market.

3. Re-arrange to relate price changes to sector-specific demand shifters:

$$\Delta p_{t} = \frac{1}{\zeta_{S}} \sum_{i \in sectors} S_{i} \left(\bar{q}_{i} + \lambda_{i} \eta_{t} + u_{i,t} \right)$$

where $\zeta_{S} \equiv \sum S_{i}\zeta_{i}$.

 \implies we can fully decompose Δp_t into sector-specific demand shifters

Identification

New Insights

ROADMAP

- Model Framework
- Estimation and Identification
- Understanding macrostructure of the Treasury market:
 - 1 Quantifying investors' sensitivities
 - **2** Decomposing yield changes
 - 3 Zooming into flight-to-safety episodes

New Insights

NEED IDIOSYNCRATIC DEMAND SHIFTER TO ADDRESS ENDOGENEITY

Classic challenge: $\Delta q_{i,t}$ and Δp_t are endogenous \implies we need instruments,

Tyipcal instruments: idiosyncratic demand shifters such as,

- Sector-specific regulation changes
- Particular episodes that induced balance sheet shocks
- Institution-specific mechanical rebalancing rules

Rely on shifters being orthogonal to other investors' unobserved shifters

New Insights

NEED IDIOSYNCRATIC DEMAND SHIFTER TO ADDRESS ENDOGENEITY

Classic challenge: $\Delta q_{i,t}$ and Δp_t are endogenous \implies we need instruments,

Tyipcal instruments: idiosyncratic demand shifters such as,

- Sector-specific regulation changes
- Particular episodes that induced balance sheet shocks
- Institution-specific mechanical rebalancing rules

Rely on shifters being orthogonal to other investors' unobserved shifters

But we need <u>multi-period</u> instruments for <u>all sectors</u> ...typically used event/industry-specific instrument do not work

Identification

New Insights

SOLUTION: LEVERAGE MODEL'S IDIOSYNCRATIC DEMAND SHIFTERS

Sector's demand shifters have a common and idiosyncratic parts,

$$\Delta q_{i,t} = -\zeta_i \Delta p_t + \bar{q}_i + \lambda_i \eta_t + \boldsymbol{u}_{i,t}$$

<u>Idea</u>: extract sector i's $u_{i,t}$ and instrument for price in sector j's demand.

Identification

New Insights

SOLUTION: LEVERAGE MODEL'S IDIOSYNCRATIC DEMAND SHIFTERS

Sector's demand shifters have a common and idiosyncratic parts,

$$\Delta q_{i,t} = -\zeta_i \Delta p_t + ar{q}_i + \lambda_i \eta_t + u_{i,t}$$

<u>Idea</u>: extract sector i's $u_{i,t}$ and instrument for price in sector j's demand.

Identification assumption: sectors' idiosyncratic shifters are independent, $\mathbb{E}\left[u_{i,t}u_{j,t} \mid \eta_t\right] = 0. \ \forall i \neq j$

• Granular instrument variables assumption (Gabaix and Koijen, 2024)

Identification

New Insights

SOLUTION: LEVERAGE MODEL'S IDIOSYNCRATIC DEMAND SHIFTERS

Sector's demand shifters have a common and idiosyncratic parts,

$$\Delta q_{i,t} = -\zeta_i \Delta p_t + ar{q}_i + \lambda_i \eta_t + u_{i,t}$$

<u>Idea</u>: extract sector i's $u_{i,t}$ and instrument for price in sector j's demand.

Identification assumption: sectors' idiosyncratic shifters are independent, $\mathbb{E}\left[u_{i,t}u_{j,t} \mid \eta_t\right] = 0. \ \forall i \neq j$

• Granular instrument variables assumption (Gabaix and Koijen, 2024)

Optimal estimator: more weight to shocks from sectors with larger price impact

• Overidentified system: *N* elasticities ζ_i and $\frac{N(N-1)}{2}$ moment conditions

ROADMAP

- Model Framework
- Estimation and Identification
- Understanding macrostructure of the Treasury market:
 - 1 Quantifying investors' sensitivities
 - **2** Decomposing yield changes
 - 3 Zooming into flight-to-safety episodes

Introduction

Model Framework

Identification

New Insights

1. QUANTIFYING SENSITIVITIES: AGGREGATE ELASTICITY

Aggregate elasticity $\zeta_{S} = 1.01$. Macro multiplier $M \equiv \frac{1}{\zeta_{S}} = 0.99$

• 1% flow \Rightarrow **15**bps in yields with average market duration (\approx 6.5 years)

Treasury market multiplier in ball park of other asset class multipliers:

- Individual corporate bond micro multiplier ≈ 0.02
- Individual equity mico multipliers ≈ 1
- $\bullet\,$ Euro area govt. bond macro multiplier ≈ 0.3
- Corporate bond rating-level portfolio multiplier ≈ 3.5
- Equity market macro multiplier ≈ 5

New Insights

1. QUANTIFYING SENSITIVITIES: SECTORAL PRICE ELASTICITIES

Table 1: Elasticity: Top contributors

Top contributors: • Households (Resid.):

- Small but highly elastic
- Federal Reserve
- RoW: less elastic but large
- Banks

Sector	S(%)	ζ	ζ Share (%)
Aggregate		1.03 (0.77, 1.3)	100.0
Households	5.74	10.54 (5.33, 15.76)	58.55
Fed	22.08	0.42 (0.11, 0.74)	9.28
Rest of World	44.45	0.42 (0.23, 0.61)	17.8
Banks	5.26	0.52 (0.28, 0.76)	2.61

New Insights

1. QUANTIFYING SENSITIVITIES: SECTORAL PRICE ELASTICITIES

Table 2: Elasticity: Least contributors

- Supply: Inelastic (stated policy)
- Broker-Dealers: Elastic but too small
- Pensions
- ETFs

Sector	S(%)	ζ	ζ Share (%)
Aggregate		1.03 (0.77, 1.3)	100.0
Supply	100.0	0.06 (-0.01, 0.13)	5.74
Broker-dealers	0.81	2.22 (-6.45, 10.88)	1.73
ETF	1.18	-0.53 (-0.89, -0.17)	-0.6
Pension	5.42	-0.02 (-0.18, 0.13)	-0.13

New Insights

1. QUANTIFYING SENSITIVITIES: LEAVE-ONE-OUT ROBUSTNESS CHECKESTIMATES

1. QUANTIFYING SENSITIVITIES: CHANGE NATURE OF LIQUIDITY PROVISION

	Sector	ζ	ζ Share (%)
Post-GFC liquidity provision:	Fed (03-08)	0.0	-
Fed: now provide backstop	Fed (09-23)	0.57	12.53
stepp-in in bad-times	Rest of World (03-08)	(0.32, 0.83) 0.76	30.38
Foreigners: stepped-back		(0.48, 1.04)	
contrary to big role pre-crisis	Rest of World (09-23)	0.3 (0.15, 0.46)	13.39
U.S. Banks: also stepped-back	U.S. Banks (03-08)	0.84 (0.47, 1.2)	3.98
consistent with fregulatory burden	U.S. Banks (09-23)	0.41 (0.21, 0.61)	2.13

Identification

New Insights

2. DECOMPOSITION YIELDS: SECTORAL CONTRIBUTIONS

Identification

New Insights

2. DECOMPOSITION YIELDS: SECTORAL CONTRIBUTIONS

New Insights

2. DECOMPOSITION YIELDS: POST-GFC DIMINISHING ROLE OF FOREIGNERS

 \implies Pre-GFC consistent with "savings glut" compressing yields…but no longer

Identification

New Insights

2. DECOMPOSITION YIELDS: CHINA AND JAPAN ROLE PARTICULARLY DIMINISHED

Identification

New Insights

2. DECOMPOSITION YIELDS: GFC AND COVID, AND THE FED

New Insights

....MORE ON THE TRANFORMING ROLE OF THE FEDERAL RESERVE

Table 3: Price elasticity and loadings: Federal Reserve

Period	S(%)	ζ	$\epsilon_{(std.)}^{VIX}$	\triangle FFR	Inf.
09-23	22.08	0.57 (0.32, 0.83)	1.55 (0.74, 2.36)	-9.4 (-12.39, -6.41)	-0.43 (-1.55, 0.7)

- Before GFC: All pre-scheduled and predictable
- After GFC: Treasury purchase as part of the standard central bank toolkit
 - Price elastic: stabilize the Treasury market
 - State-contingent: deployed during market distress
 - Coordination between direct purchase with conventional monetary policy

New Insights

3. ZOOMING INTO FLIGHT-TO-SAFETY: WHO INCREASES TREASURY DEMAND?

Conventional wisdom: foreigners

• Key explanation of "exorbitant privilege" e.g, Jiang, Krishnamurthy, and Lustig (2024)

3. ZOOMING INTO FLIGHT-TO-SAFETY: WHO INCREASES TREASURY DEMAND?

Conventional wisdom: foreigners	Sector	S(%)	$\epsilon_{(std.)}^{VIX}$	$\epsilon_{(std.)}^{VIX}$ Share (%)
• Key explanation of "exorbitant privilege" e.g, Jiang, Krishnamurthy, and Lustig (2024)	Aggregate (09-)		0.75 (0.0, 1.49)	100.0
at least no longer the case	Households	5.74	16.12 (6.12, 26.13)	124.11
	Fed (09-)	22.08	1.55 (0.74, 2.36)	45.94
	Rest of World	44.45	-0.2 (-0.87, 0.48)	-11.69
	Supply	100.0	-0.19 (-0.4, 0.02)	-25.02
	Mutual Funds	6.75	-1.94 (-3.52, -0.37)	-17.6

3. ZOOMING INTO FLIGHT-TO-SAFETY: WHO INCREASES TREASURY DEMAND?

Sector	S(%)	$\epsilon_{(std.)}^{VIX}$	$\epsilon_{(std.)}^{VIX}$ Share (%)
Aggregate (09-)		0.75 (0.0, 1.49)	100.0
Households	5.74	16.12 (6.12, 26.13)	124.11
Fed (09-)	22.08	1.55 (0.74, 2.36)	45.94
Rest of World	44.45	-0.2 (-0.87, 0.48)	-11.69
Supply	100.0	-0.19 (-0.4, 0.02)	-25.02
Mutual Funds	6.75	-1.94 (-3.52, -0.37)	-17.6
	Sector Aggregate (09-) Households Fed (09-) Rest of World Supply Mutual Funds	Sector S(%) Aggregate (09-) - Households 5.74 Fed (09-) 22.08 Rest of World 44.45 Supply 100.0 Mutual Funds 6.75	$\begin{array}{c c} Sector & S(\%) & \epsilon^{VIX}_{(std.)} \\ \\ \mbox{Aggregate (09-)} & 0.75 & (0.0, 1.49) \\ \\ \mbox{Households} & 5.74 & 16.12 & (6.12, 26.13) \\ \\ \mbox{Fed (09-)} & 22.08 & 1.55 & (0.74, 2.36) \\ \\ \mbox{Fed (09-)} & 22.08 & (0.74, 2.36) & (0.74, 2.36) \\ \\ \mbox{Rest of World} & 44.45 & -0.2 & (-0.87, 0.48) \\ \\ \mbox{Supply} & 100.0 & -0.19 & (-0.4, 0.02) \\ \\ \mbox{Mutual Funds} & 6.75 & -1.94 & (-3.52, -0.37) \\ \end{array}$

 \implies Foreigner behavior consistent with using Treasuries as a hedge ...rather domestic investors exhibit flight-to-quality

Identification

New Insights

3. ZOOMING INTO FLIGHT-TO-SAFETY: IN FACT FOREIGNERS SELL IN BAD TIMES

Figure 2: 2003-2023 Quarterly

Figure 3: GFC (07-09 Monthly)

CONCLUSION

An unified equilibrium-pricing framework for the U.S. Treasury market

- A parsimonious yet flexible approach to model different players jointly
- A machinery to decompose changes in yields by macro factors \times investors

Provides machinery to uncover the "macrostucture" of the Treasury market:

- Treasury market is quite inelastic, with large heterogeneity across investors
- Post-GFC, large changes in Treasury market—foreigners, Fed, and banks
- Contrary to the conventional wisdom, the foreigers do not fly-to-safety

REFERENCES

 Ahmed, Rashad and Alessandro Rebucci (2024). "Dollar Reserves and U.S.
 Yields: Identifying the Price Impact of Official Flows". In: Journal of International Economics 152, p. 103974. URL:

https://www.sciencedirect.com/science/article/pii/S0022199624001016.

 Chodorow-Reich, Gabriel et al. (July 5, 2024). Propagation of Shocks in Networks: Identification and Applications. DOI: 10.2139/ssrn.4885984.
 Pre-published.

Cochrane, John H. and Monika Piazzesi (Mar. 2005). "Bond Risk Premia". In: American Economic Review 95.1, pp. 138–160. URL:

https://ideas.repec.org/a/aea/aecrev/v95y2005i1p138-160.html.

Eren, Egemen, Andreas Schrimpf, and Fan Dora Xia (2023). **"The Demand for Government Debt".** In: SSRN Electronic Journal. ISSN: 1556-5068. DOI:

10.2139/ssrn.4466154.

Fang Viang Dryan Hardy and Karan K Lawis (May 2022) Who Halds

POST-CREDIT: WHAT IF CHINA SOLD ALL US TREASURIES

Poforoncos

• Assuming no political repercussion, no contigent purchase by other sectors, unanticipated and no guidance on the future path

$$\Delta p_t = \underbrace{M}_{1.0} \times \underbrace{\Delta q_{China}}_{-3.5\%} = -3.5\% \implies \Delta y_t = 60bps$$

Roughly 1.5 S.D. of quarterly Treasury price movement

POST-CREDIT: WHAT IF CHINA SOLD ALL US TREASURIES

References

• Assuming no political repercussion, no contigent purchase by other sectors, unanticipated and no guidance on the future path

$$\Delta p_t = \underbrace{M}_{1.0} \times \underbrace{\Delta q_{China}}_{-3.5\%} = -3.5\% \implies \Delta y_t = 60bps$$

Roughly 1.5 S.D. of quarterly Treasury price movement

DYNAMIC PRICE IMPACT: LOCAL PROJECTIONS

GENERAL MODEL

$$\begin{cases} q_{i,t} &= -p_t \times \mathbf{C}'_{i,t} \zeta + \mathbf{X}'_{i,t} \beta + u_{i,t}, \\ 0 &= \sum_i S_{i,t} q_{i,t} \end{cases} \implies p_t = \frac{1}{\mathbf{C}'_{S,t} \zeta} \left[\mathbf{X}'_{S,t} \beta + u_{S,t} \right],$$

- Elasticity parameterized by C_{i,t}, entity-specific and time-varying
- Moment conditions become $\mathbb{E}\left[u_{i,t}u_{j,t} \mid \eta_t, C_t, S_t\right] = 0$
- $S_{i,t}$ can also be time-varying and do not necessarily sum to 1

FULL SPECIFICATION

• Financial Account (Z.1) + TIC for foreigners + Call report for banks, 03Q4-23Q4

$$\Delta q_{i,t} = -\zeta_{i,\mathbf{r(t)}} \Delta p_t + \lambda_{\mathsf{obs},i,\mathbf{r(t)}} \eta_{\mathsf{obs},t} + \lambda_{\mathsf{pc},i} \eta_{\mathsf{pc},t} + \overline{f_i} + u_{i,t} \quad orall i$$

- $\Delta q_{i,t}$: Quarterly transaction divided by $S_{i,t}$ (avg. mkt share over sample period)
- r(t): Sector-specific regime shifts in elasticities/loadings (09Q1)
- Consolidate sectors into categories: Com
 - ▶ Composition
 - Impose homogeneous ζ within categories
 - ▶ (e.g. close-end & open-end funds; individual banks; China & Japan)

References

COMPARISON: HOUSEHOLDS (LEFT) VS. MUTUAL FUNDS (RIGHT)

COMMON FACTORS

- Factors include both:
 - Observable macro variables
 - Unobservable factors extracted from granular data using PCA
- Three-step approach:
 - **1** Regress price & quantities on factors η ;
 - 2 Estimate $\hat{\zeta}_i$ using residuals (no issue with s.e.);
 - **3** Recover loadings using $\hat{\zeta}_i$ and coefficients in step 1.

▶ Back

ASYMPTOTIC EFFICIENCY OF THE OPTIMAL GIV ESTIMATOR

Theorem

The optimal GIV estimator $\hat{\zeta}$ is consistent and asymptotically normal:

$$\sqrt{T}\left(\hat{\zeta}-\zeta\right)\stackrel{d}{
ightarrow}\mathcal{N}\left(\mathbf{0},\mathbf{V}^{\zeta}
ight),$$

for $T \to \infty.$ Moreover, V^{ζ} achieves the semi-parametric efficiency bound

$$V^{\zeta} = \zeta_{\mathsf{S}}^{2} \times Inv \left(\begin{bmatrix} \frac{1}{\sigma_{1}^{2}} \sum_{i \neq 1} \mathsf{S}_{i}^{2} \sigma_{i}^{2} & \mathsf{S}_{1} \mathsf{S}_{2} & \cdots \\ \mathsf{S}_{1} \mathsf{S}_{2} & \frac{1}{\sigma_{2}^{2}} \sum_{i \neq 2} \mathsf{S}_{i}^{2} \sigma_{i}^{2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \right)$$

MISSING INTERCEPT

- Estimating factor loadings requires consistently estimating price elasticities!
- e.g., A one-factor model without shocks: $q_{i,t} = -\zeta_i p_t + \lambda_i \eta_t$.

$$\lambda_{i}^{q} \equiv \frac{\mathbb{E}\left[\boldsymbol{q}_{i,t}\eta_{t}\right]}{\mathbb{E}\left[\eta_{t}^{2}\right]} = \frac{\mathbb{E}\left[\left(-\zeta_{i}\boldsymbol{p}_{t}+\lambda_{i}\eta_{t}\right)\eta_{t}\right]}{\mathbb{E}\left[\eta_{t}^{2}\right]} = \lambda_{i} - \frac{\zeta_{i}}{\zeta_{s}}\lambda_{s}.$$

Relation with Standard GIV

- Standard GIV:
 - Assuming ζ_i is homogeneous, i.e., $\zeta = \zeta \iota$.
 - A size-minus-precision weighting scheme to solve ζ analytically
- Define the vector $\mathbf{E}_i = \frac{1/\sigma_i^2}{\sum_i 1/\sigma_i^2}$. GIV shows

 $\mathbf{E}'\mathbb{E}[\mathbf{u}_t\mathbf{u}_t']\left(\mathbf{S}-\mathbf{E}\right)=\mathbf{0}$

Under the homogeneity assumption of ζ , it is equivalent to

$$\mathbb{E}[(q_{E,t} + \zeta p_t) (q_{S,t} - q_{E,t})] = 0$$

It is then implementable by regressing $q_{E,t}$ on p_t instrumented by $q_{S,t} - q_{E,t}$.

EVOLUTION OF TREASURY YIELDS

Figure 4: Average yields and duration

Figure 5: Price change in market portfolio

11 / 21

References

INVESTOR BASE OF THE U.S. TREASURY MARKET

ROBUSTNESS: PRICE ELASTICITIES

Sector	Baseline	5 factors	1970-2023	Including Bills
Aggregate	1.04	1.08	1.3	2.09
	(0.81, 1.27)	(0.83, 1.34)	(1.11, 1.5)	(1.26, 2.91)
Other	-0.24	-0.11	0.19	0.56
	(-0.46, -0.01)	(-0.34, 0.11)	(0.02, 0.36)	(0.26, 0.87)
Households	10.07	11.09	10.5	4.34
	(5.26, 14.88)	(5.71, 16.46)	(7.29, 13.7)	(0.78, 7.9)
Pension	0.2	0.2	-0.23	0.17
	(0.04, 0.36)	(0.04, 0.36)	(-0.39, -0.07)	(-0.07, 0.4)
Insurance	0.51	0.38	-0.67	-0.01
	(0.21, 0.81)	(0.09, 0.66)	(-0.93, -0.41)	(-0.51, 0.49)
Mutual Funds	0.58	0.51	0.47	0.55
	(0.11, 1.05)	(0.03, 1.0)	(0.23, 0.72)	(-0.11, 1.21)
ETF	-0.1	-0.2	0.23	-0.33
	(-0.46, 0.26)	(-0.56, 0.17)	(0.04, 0.42)	(-0.83, 0.17)
Dealers	7.42	7.94	-1.47	1.11
	(-1.49, 16.32)	(-1.22, 17.1)	(-8.37, 5.43)	(-10.11, 12.33)
Fed	0.44	0.49	0.03	0.24
	(0.15, 0.72)	(0.2, 0.79)	(-0.06, 0.13)	(-0.13, 0.6)
Banks	0.53	0.43	1.0	0.63
	(0.35, 0.7)	(0.26, 0.6)	(0.51, 1.49)	(0.42, 0.85)
RoW	0.44	0.39	0.39	0.57
	(0.3, 0.58)	(0.25, 0.53)	(0.27, 0.52)	(0.36, 0.79)
a 1				

13 / 21

PRICE ELASTICITIES: LEAVE-ONE-OUT ESTIMATION DEACK

THE ROLE OF BROKER-DEALERS

Figure 6: Raw Dollar Flows

Figure 7: BD Flows vs Net Demand by Others

YIELD DECOMPOSITION: CONTRIBUTION OF LATENT SHOCKS

▶ Back

FOREIGN DEMAND AND YIELD: QUARTER-BY-QUARTER DECOMPOSITION

QUARTER-BY-QUARTER YIELD DECOMPOSITION

GROSS EXTERNAL ASSETS OF CHINA AND JAPAN: 2010-2023

China

Japan

Back

REGIONAL DISTRIBUTION OF CHINA'S PRIVATE PORTFOLIO INVESTMENT

Portfolio debt assets (billions USD)

Portfolio equity assets (billions USD)

References

REGIONAL DISTRIBUTION OF JAPAN'S PRIVATE PORTFOLIO INVESTMENT

Portfolio debt assets (billions USD)

Portfolio equity assets (billions USD)

