Options and Futures
Replicating the payoff of a call option using the stock and bond
The price of the call option has to be the same as the price of the replicating portfolio
Let \Delta be the number of stocks, and B be the number of bonds, we have
\left.\begin{align*}107\Delta+B=1\\ 97\Delta+B=0 \end{align*} \right\} \implies100\times\Delta+\frac{1}{1+1\%}\times B=?
\Large +
\Large =
Solve the system of equations of \Delta and B: \left.\begin{align*}107\Delta+B=1\\ 97\Delta+B=0 \end{align*} \right\} \implies\left\{ \begin{align*}\Delta &= 0.1\\ B &= -9.7 \end{align*} \right.
The price of the call option is then given by:
100\times\Delta+\frac{1}{1+1\%}\times B=100\times0.1+\frac{1}{1+1\%}\times(-9.7) = \frac{0.4}{1.01} \approx 0.396
\small \left.\begin{align*}\Delta\times S_{u}+B=X_{u}\\ \Delta\times S_{d}+B=X_{d} \end{align*} \right\} \implies\left\{ \begin{align*}\Delta & =\frac{X_{u}-X_{d}}{S_{u}-S_{d}}\\ B & =X_{u}-\Delta S_{u}=X_{d}-\Delta S_{d} \end{align*} \right. \small X=S\times\Delta+\frac{1}{1+r}\times B
Did we ever use the probability p? No.
In fact, the physical probability p is not the relevant probability
We can compute the implied “probability” such that the expected return of the stock equals the risk-free rate 1\%: \begin{aligned} 100 \times (1+1\%) &= 107 \times q + 97 \times (1-q) \\ q &= 40\% \end{aligned}
This q is called the risk-neutral probability
Risk-neutral probability
The probability under which the expected return of the stock equals the risk-free rate r
\underset{\text{Risk-neutral prob.}}{\underbrace{\left(\begin{array}{c} 40\% \uparrow\\ 60\% \downarrow \end{array}\right)}}=\underset{\text{Physical prob.}}{\underbrace{\left(\begin{array}{c} 50\% \uparrow\\ 50\% \downarrow \end{array}\right)}}\times\underset{\text{Value of \$1}}{\underbrace{\left(\begin{array}{c} \$0.8 \uparrow\\ \$1.2 \downarrow \end{array}\right)}}
\underset{\text{Risk-neutral prob.}}{\underbrace{\left(\begin{array}{c} 40\% \uparrow\\ 60\% \downarrow \end{array}\right)}}=\underset{\text{Physical prob.}}{\underbrace{\left(\begin{array}{c} 50\% \uparrow\\ 50\% \downarrow \end{array}\right)}}\times\underset{\text{Value of \$1}}{\underbrace{\left(\begin{array}{c} \$0.8 \uparrow\\ \$1.2 \downarrow \end{array}\right)}}
Interpretation of the valuation factor:
Fundamental Asset Pricing Equation
An asset price equals to the expected value of the discounted payoffs:
S=\sum_{s\in\{up,down\}}\underset{\text{Risk-neutral probability}_{s}}{\underbrace{\text{Probability}_{s}\times\text{Value of \$1 in state }s}}\times\frac{1}{1+r}\times\text{Payoff}_{s}
For example, the price of the stock is given as:
\$100=\frac{1}{1+1\%}\left(\$107\times\underset{40\%}{\underbrace{50\%\times0.8}}+\$97\times\underset{60\%}{\underbrace{50\%\times1.2}}\right)
Given the stock price and the risk-free rate, we can back out the implied risk-neutral probabilities, and use it to price any other derivative!
Solve the risk-neutral probability of the Up state q from the following equation: S_0 = \frac{1}{1+r}\left[S_u\times q + S_d\times (1-q)\right] \implies q = \frac{(S_0 \times (1+r)) - S_d}{S_u - S_d} = \frac{r - d}{u - d} We define S_u = S_0 \times (1+u) and S_d = S_0 \times (1+d) to have the last equality.
For a derivative that pays X_u in the Up state and X_d in the Down state, use the fundamental asset pricing equation, the price of the derivative is given by: X = \frac{1}{1+r}\left[X_u\times q + X_d\times (1-q)\right]
State Price
The price of an asset that pays $1 in a given state and $0 in all other states. Such assets are called Arrow-Debreu securities.
X=\frac{1}{1+r}\sum_{s\in\{up,down\}}\text{X}_{s}\times q_{s} where q_s is the risk-neutral probability of the state s.